Oral Acute Toxicity, Influence on the Gastrointestinal Microbiota and In vivo Anti-Salmonellosis Effect of Zizyphus lotus (L.) and Ruta chalepensis (L.) Essential Oils
Nour El Houda Bekkar, B. Meddah, Bahadır Keskin, P. Sonnet
{"title":"Oral Acute Toxicity, Influence on the Gastrointestinal Microbiota and In vivo Anti-Salmonellosis Effect of Zizyphus lotus (L.) and Ruta chalepensis (L.) Essential Oils","authors":"Nour El Houda Bekkar, B. Meddah, Bahadır Keskin, P. Sonnet","doi":"10.30491/JABR.2020.229267.1217","DOIUrl":null,"url":null,"abstract":"Introduction: The aim of this study was to evaluate the chemical composition of Z. lotus (ZL) and R. chalepensis (RC) Essential Oils (EOs), the oral acute toxicity, influence on the gastrointestinal (GI) microbiota, and the in vivo anti-salmonellosis effect. Materials and Methods: The EOs were isolated using the steam distillation process, and bioactive components were identified by GC-MS analysis. Oral acute toxicity, influence on the GI flora composition, and the anti-salmonellosis effect were elucidated using in vivo methods on experimental animals. Results: The GC-MS allowed us to identify 33 and 58 components in Z. lotus and R. chalepensis, respectively. Di-isooctyl phthalate (89.857%) was found to be the major compound identified in ZL. The main compounds in RC were 2-undecanone (26.528 %) followed by 2-nonanone (13.404 %). The LD50 of EOs was found to be greater than 5000 mg/kg. Also, no negative influence to intestinal microbiota was detected. An important decrease in S. enterica ssp arizonae cells achieving a bactericidal effect was recorded in rats treated with the EOs of both plants at a dose of 400 mg/kg. In parallel, an important significant (p <0.05) increase in lymphocyte number was observed for all tested animals. A decrease in alkaline phosphatase (ALP), alanine aminotransferase(ALT), and aspartate aminotransferase (AST) levels were observed. Furthermore, a reduced blood sedimentation rate (ESR) was recorded in treated animals. Conclusions: The Z. lotus and R. chalepensis act effectively as anti-salmonellosis agents, which support the use of these plants to cure gastrointestinal infections.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.229267.1217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction: The aim of this study was to evaluate the chemical composition of Z. lotus (ZL) and R. chalepensis (RC) Essential Oils (EOs), the oral acute toxicity, influence on the gastrointestinal (GI) microbiota, and the in vivo anti-salmonellosis effect. Materials and Methods: The EOs were isolated using the steam distillation process, and bioactive components were identified by GC-MS analysis. Oral acute toxicity, influence on the GI flora composition, and the anti-salmonellosis effect were elucidated using in vivo methods on experimental animals. Results: The GC-MS allowed us to identify 33 and 58 components in Z. lotus and R. chalepensis, respectively. Di-isooctyl phthalate (89.857%) was found to be the major compound identified in ZL. The main compounds in RC were 2-undecanone (26.528 %) followed by 2-nonanone (13.404 %). The LD50 of EOs was found to be greater than 5000 mg/kg. Also, no negative influence to intestinal microbiota was detected. An important decrease in S. enterica ssp arizonae cells achieving a bactericidal effect was recorded in rats treated with the EOs of both plants at a dose of 400 mg/kg. In parallel, an important significant (p <0.05) increase in lymphocyte number was observed for all tested animals. A decrease in alkaline phosphatase (ALP), alanine aminotransferase(ALT), and aspartate aminotransferase (AST) levels were observed. Furthermore, a reduced blood sedimentation rate (ESR) was recorded in treated animals. Conclusions: The Z. lotus and R. chalepensis act effectively as anti-salmonellosis agents, which support the use of these plants to cure gastrointestinal infections.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis