Emerging trends: General fine-tuning (gft)

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Language Engineering Pub Date : 2022-05-23 DOI:10.1017/S1351324922000237
Kenneth Ward Church, Xingyu Cai, Yibiao Ying, Zeyu Chen, Guangxu Xun, Yuchen Bian
{"title":"Emerging trends: General fine-tuning (gft)","authors":"Kenneth Ward Church, Xingyu Cai, Yibiao Ying, Zeyu Chen, Guangxu Xun, Yuchen Bian","doi":"10.1017/S1351324922000237","DOIUrl":null,"url":null,"abstract":"Abstract This paper describes gft (general fine-tuning), a little language for deep nets, introduced at an ACL-2022 tutorial. gft makes deep nets accessible to a broad audience including non-programmers. It is standard practice in many fields to use statistics packages such as R. One should not need to know how to program in order to fit a regression or classification model and to use the model to make predictions for novel inputs. With gft, fine-tuning and inference are similar to fit and predict in regression and classification. gft demystifies deep nets; no one would suggest that regression-like methods are “intelligent.”","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"28 1","pages":"519 - 535"},"PeriodicalIF":2.3000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1351324922000237","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper describes gft (general fine-tuning), a little language for deep nets, introduced at an ACL-2022 tutorial. gft makes deep nets accessible to a broad audience including non-programmers. It is standard practice in many fields to use statistics packages such as R. One should not need to know how to program in order to fit a regression or classification model and to use the model to make predictions for novel inputs. With gft, fine-tuning and inference are similar to fit and predict in regression and classification. gft demystifies deep nets; no one would suggest that regression-like methods are “intelligent.”
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新兴趋势:通用微调(gft)
摘要本文描述了gft(通用微调),这是一种用于深度网络的小语言,在ACL-2022教程中介绍。gft使得包括非程序员在内的广大用户都可以访问deep nets。使用R等统计软件包是许多领域的标准做法。不需要知道如何编程来拟合回归或分类模型,也不需要使用该模型来预测新的输入。在gft中,微调和推理类似于回归和分类中的拟合和预测。gft揭开深网的神秘面纱;没有人会认为类似回归的方法是“聪明的”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Language Engineering
Natural Language Engineering COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
12.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.
期刊最新文献
Start-up activity in the LLM ecosystem Anisotropic span embeddings and the negative impact of higher-order inference for coreference resolution: An empirical analysis Automated annotation of parallel bible corpora with cross-lingual semantic concordance How do control tokens affect natural language generation tasks like text simplification Emerging trends: When can users trust GPT, and when should they intervene?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1