Classification Methods for EEG Patterns of Imaginary Movements

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligenza Artificiale Pub Date : 2021-01-22 DOI:10.15622/IA.2021.20.1.4
Nikolai Kapralov, Zh. V. Nagornova, N. Shemyakina
{"title":"Classification Methods for EEG Patterns of Imaginary Movements","authors":"Nikolai Kapralov, Zh. V. Nagornova, N. Shemyakina","doi":"10.15622/IA.2021.20.1.4","DOIUrl":null,"url":null,"abstract":"The review focuses on the most promising methods for classifying EEG signals for non-invasive BCIs and theoretical approaches for the successful classification of EEG patterns. The paper provides an overview of articles using Riemannian geometry, deep learning methods and various options for preprocessing and \"clustering\" EEG signals, for example, common-spatial pattern (CSP). Among other approaches, pre-processing of EEG signals using CSP is often used, both offline and online. The combination of CSP, linear discriminant analysis, support vector machine and neural network (BPNN) made it possible to achieve 91% accuracy for binary classification with exoskeleton control as a feedback. There is very little work on the use of Riemannian geometry online and the best accuracy achieved so far for a binary classification problem is 69.3% in the work. At the same time, in offline testing, the average percentage of correct classification in the considered articles for approaches with CSP – 77.5 ± 5.8%, deep learning networks – 81.7 ± 4.7%, Riemannian geometry – 90.2 ± 6.6%. Due to nonlinear transformations, Riemannian geometry-based approaches and complex deep neural networks provide higher accuracy and better extract of useful information from raw EEG recordings rather than linear CSP transformation. However, in real-time setup, not only accuracy is important, but also a minimum time delay. Therefore, approaches using the CSP transformation and Riemannian geometry with a time delay of less than 500 ms may be in the future advantage.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"20 1","pages":"94-132"},"PeriodicalIF":1.9000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15622/IA.2021.20.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The review focuses on the most promising methods for classifying EEG signals for non-invasive BCIs and theoretical approaches for the successful classification of EEG patterns. The paper provides an overview of articles using Riemannian geometry, deep learning methods and various options for preprocessing and "clustering" EEG signals, for example, common-spatial pattern (CSP). Among other approaches, pre-processing of EEG signals using CSP is often used, both offline and online. The combination of CSP, linear discriminant analysis, support vector machine and neural network (BPNN) made it possible to achieve 91% accuracy for binary classification with exoskeleton control as a feedback. There is very little work on the use of Riemannian geometry online and the best accuracy achieved so far for a binary classification problem is 69.3% in the work. At the same time, in offline testing, the average percentage of correct classification in the considered articles for approaches with CSP – 77.5 ± 5.8%, deep learning networks – 81.7 ± 4.7%, Riemannian geometry – 90.2 ± 6.6%. Due to nonlinear transformations, Riemannian geometry-based approaches and complex deep neural networks provide higher accuracy and better extract of useful information from raw EEG recordings rather than linear CSP transformation. However, in real-time setup, not only accuracy is important, but also a minimum time delay. Therefore, approaches using the CSP transformation and Riemannian geometry with a time delay of less than 500 ms may be in the future advantage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
想象运动脑电模式的分类方法
本文综述了无创脑机接口中最有前途的脑电信号分类方法和成功分类脑电模式的理论途径。本文概述了使用黎曼几何、深度学习方法和各种预处理和“聚类”EEG信号的选项的文章,例如,公共空间模式(CSP)。在其他方法中,经常使用CSP对EEG信号进行预处理,包括离线和在线。CSP、线性判别分析、支持向量机和神经网络(BPNN)的结合使得外骨骼控制作为反馈的二分类准确率达到91%。在网上使用黎曼几何的工作很少,到目前为止,对于一个二分类问题,工作中达到的最佳精度是69.3%。同时,在离线测试中,CSP方法的平均分类正确率为77.5±5.8%,深度学习网络方法为81.7±4.7%,黎曼几何方法为90.2±6.6%。由于非线性变换,与线性CSP变换相比,基于黎曼几何的方法和复杂的深度神经网络可以提供更高的精度和更好的从原始EEG记录中提取有用信息。然而,在实时设置中,不仅精度很重要,而且最小的时间延迟也很重要。因此,使用CSP变换和时间延迟小于500 ms的黎曼几何的方法可能在未来具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
期刊最新文献
Special Issue NL4AI 2022: Workshop on natural language for artificial intelligence User-centric item characteristics for personalized multimedia systems: A systematic review Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework A framework for safe decision making: A convex duality approach Grounding End-to-End Pre-trained architectures for Semantic Role Labeling in multiple languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1