Synthesis and characterization of green phenolic resin with olive oil mill wastewater

IF 5.9 3区 环境科学与生态学 Q1 Environmental Science Environmental Sciences Europe Pub Date : 2023-02-13 DOI:10.1186/s12302-023-00719-2
Günay Özbay, Nadir Ayrilmis, Muhammad Syarhabil Ahmad
{"title":"Synthesis and characterization of green phenolic resin with olive oil mill wastewater","authors":"Günay Özbay,&nbsp;Nadir Ayrilmis,&nbsp;Muhammad Syarhabil Ahmad","doi":"10.1186/s12302-023-00719-2","DOIUrl":null,"url":null,"abstract":"<div><p>Olive oil mill wastewater (OMW), a by-product of the olive oil industry, each year is generated millions of tons all over Mediterranean countries. Uncontrolled disposal of the OMW leads to massive environmental problems including soil and water pollution. In this experimental study, the OMW was used to partly replace clean water for getting prepared formaldehyde solution. Then, phenol and formaldehyde solutions were synthesized under alkali conditions to obtain more green phenol–formaldehyde (PF) resin. The effect of the OMW substitution level on the chemical and thermal properties of PF resin was examined by the Fourier transform infrared (FT-IR) spectral and thermogravimetric (TGA) analysis, respectively. Moreover, the bonding strength of each PF resin was evaluated under dry and wet conditions. It was found that FT-IR measurements showed that the PF resin containing various amounts of the OMW had a chemical structure very similar to the PF resin. The thermogravimetric analysis demonstrated that the low‐molecular‐weight organics in the OMW had negatively affected the thermal stability of the modified PF resins. In addition, the wood samples bonded with the PF resin containing up to 30 wt% OMW met the minimum requirements of interior and exterior bonding performance according to standard EN 12765. The OMW could be replaced by clean water up to 30 wt% for the production of green phenolic resin.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00719-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00719-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

Abstract

Olive oil mill wastewater (OMW), a by-product of the olive oil industry, each year is generated millions of tons all over Mediterranean countries. Uncontrolled disposal of the OMW leads to massive environmental problems including soil and water pollution. In this experimental study, the OMW was used to partly replace clean water for getting prepared formaldehyde solution. Then, phenol and formaldehyde solutions were synthesized under alkali conditions to obtain more green phenol–formaldehyde (PF) resin. The effect of the OMW substitution level on the chemical and thermal properties of PF resin was examined by the Fourier transform infrared (FT-IR) spectral and thermogravimetric (TGA) analysis, respectively. Moreover, the bonding strength of each PF resin was evaluated under dry and wet conditions. It was found that FT-IR measurements showed that the PF resin containing various amounts of the OMW had a chemical structure very similar to the PF resin. The thermogravimetric analysis demonstrated that the low‐molecular‐weight organics in the OMW had negatively affected the thermal stability of the modified PF resins. In addition, the wood samples bonded with the PF resin containing up to 30 wt% OMW met the minimum requirements of interior and exterior bonding performance according to standard EN 12765. The OMW could be replaced by clean water up to 30 wt% for the production of green phenolic resin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橄榄油厂废水制备绿色酚醛树脂及表征
橄榄油厂废水(OMW)是橄榄油工业的副产品,每年在地中海国家产生数百万吨。不加控制的废物处理导致了大量的环境问题,包括土壤和水污染。在本实验研究中,用OMW部分代替清水制备甲醛溶液。然后,在碱条件下合成苯酚和甲醛溶液,得到更多的绿色酚醛树脂。采用傅里叶变换红外光谱(FT-IR)和热重分析(TGA)分别考察了OMW取代水平对PF树脂化学性能和热性能的影响。并对各酚醛树脂在干湿条件下的粘接强度进行了评价。FT-IR测量表明,含有不同量OMW的PF树脂具有与PF树脂非常相似的化学结构。热重分析表明,OMW中的低分子量有机物对改性酚醛树脂的热稳定性有负面影响。此外,与含有高达30 wt% OMW的PF树脂粘合的木材样品符合EN 12765标准的内外粘合性能的最低要求。在绿色酚醛树脂的生产中,高达30% wt%的清洁水可以取代普通水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Sciences Europe
Environmental Sciences Europe Environmental Science-Pollution
CiteScore
9.20
自引率
1.70%
发文量
110
审稿时长
13 weeks
期刊介绍: ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation. ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation. ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation. Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues. Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.
期刊最新文献
Towards the global plastic treaty: a clue to the complexity of plastics in practice Chronic toxicity testing including transcriptomics-based molecular profiling in Cloeon dipterum Environmental impact of quarrying on air quality in Ebonyi state, Nigeria How does high-speed railway affect green technology innovation? A perspective of high-quality human capital Management of links of interest in European Union expertise authorities dealing with plant protection products: comparative analysis and recommendations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1