{"title":"Allium cepa-based zinc oxide nanoparticles: synthesis, characterization and biochemical potentials","authors":"Sheeza Masud, H. Munir, M. Irfan, M. Tayyab","doi":"10.1680/jbibn.22.00038","DOIUrl":null,"url":null,"abstract":"In this research work, the Allium cepa (AC)bulb-based zinc oxide nanoparticles (ZnO-NPs) were prepared successfully through a green synthesis approach. Phytocompounds present in the Allium cepa bulb successfully reduced and stabilized the Zn+2 ions into ZnO-NPs. Synthesis of the liquid form (L-ZnO-NPs) and calcined form (C-ZnO-NPs) were carried out. The color change of nanoparticles (NPs) colloidal solution from transparent to yellow, the surface plasmon resonance (SPR) peaks by UV-Visible spectroscopic analyses at 350 nm and 370 nm and Infrared spectrum shown functional groups below 700 nm, confirmed the synthesis of ZnO-NPs. The elemental composition of NPs revealed that the molecular weight of Zinc was 66 % and 61 % while Oxygen was 24 % and 26 % respectively in C-ZnO-NPs and L-ZnO-NPs. The scanning electron microscopy and X-ray diffraction pattern confirmed the successful synthesis of rod-shaped, crystalline ZnO-NPs (30-35 nm) with uniform distribution. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay-based antioxidant potential of C-ZnO-NPs and L-ZnO-NPs were recorded as 72 % and 65 % inhibition respectively while hydrogen peroxide (H2O2) radical scavenging assays revealed 62 % and 48 % inhibition respectively at 75 µL concentration. ZnO-NPs showed good antimicrobial, in-vitro anti-diabetic and antioxidant potential. Hence, Allium cepa bulb based ZnO-NPs through a green chemistry approach can be considered an innovative addition to the science of free radical scavenging, diabetes, and microbial infection management.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.22.00038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In this research work, the Allium cepa (AC)bulb-based zinc oxide nanoparticles (ZnO-NPs) were prepared successfully through a green synthesis approach. Phytocompounds present in the Allium cepa bulb successfully reduced and stabilized the Zn+2 ions into ZnO-NPs. Synthesis of the liquid form (L-ZnO-NPs) and calcined form (C-ZnO-NPs) were carried out. The color change of nanoparticles (NPs) colloidal solution from transparent to yellow, the surface plasmon resonance (SPR) peaks by UV-Visible spectroscopic analyses at 350 nm and 370 nm and Infrared spectrum shown functional groups below 700 nm, confirmed the synthesis of ZnO-NPs. The elemental composition of NPs revealed that the molecular weight of Zinc was 66 % and 61 % while Oxygen was 24 % and 26 % respectively in C-ZnO-NPs and L-ZnO-NPs. The scanning electron microscopy and X-ray diffraction pattern confirmed the successful synthesis of rod-shaped, crystalline ZnO-NPs (30-35 nm) with uniform distribution. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay-based antioxidant potential of C-ZnO-NPs and L-ZnO-NPs were recorded as 72 % and 65 % inhibition respectively while hydrogen peroxide (H2O2) radical scavenging assays revealed 62 % and 48 % inhibition respectively at 75 µL concentration. ZnO-NPs showed good antimicrobial, in-vitro anti-diabetic and antioxidant potential. Hence, Allium cepa bulb based ZnO-NPs through a green chemistry approach can be considered an innovative addition to the science of free radical scavenging, diabetes, and microbial infection management.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.