{"title":"Automatic recognition of density and weave pattern of yarn-dyed fabric","authors":"Jun Xiang, R. Pan","doi":"10.2478/aut-2022-0025","DOIUrl":null,"url":null,"abstract":"Abstract Under the production mode of small-batch and multi-item, the recognition of yarn-dyed fabric patterns is a crucial task in the textile industry. In this article, an automatic recognition system based on pixel-level features is proposed to recognize the density, the weave pattern, and the color pattern. In this system, the fabric images are captured by a scanner. First, a method based on the Hough transform is used to correct the skew of the yarns, including warp and weft. Second, the yarns and nodes are located in the enhanced images with a brightness-projection method. The density can be calculated by using the results. Then, the type of each node is identified based on the boundary information. We can obtain the weave pattern after knowing the type of each node. Finally, the fuzzy C-means algorithm is used to determine the color of each node, and thus we obtain the color pattern of the yarn-dyed fabric. Experimental results demonstrate that the proposed recognition system is effective for detecting the structural parameters of yarn-dyed fabric.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2022-0025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Under the production mode of small-batch and multi-item, the recognition of yarn-dyed fabric patterns is a crucial task in the textile industry. In this article, an automatic recognition system based on pixel-level features is proposed to recognize the density, the weave pattern, and the color pattern. In this system, the fabric images are captured by a scanner. First, a method based on the Hough transform is used to correct the skew of the yarns, including warp and weft. Second, the yarns and nodes are located in the enhanced images with a brightness-projection method. The density can be calculated by using the results. Then, the type of each node is identified based on the boundary information. We can obtain the weave pattern after knowing the type of each node. Finally, the fuzzy C-means algorithm is used to determine the color of each node, and thus we obtain the color pattern of the yarn-dyed fabric. Experimental results demonstrate that the proposed recognition system is effective for detecting the structural parameters of yarn-dyed fabric.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.