Role of Apolipoprotein A1 in PPAR Signaling Pathway for Nonalcoholic Fatty Liver Disease

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL PPAR Research Pub Date : 2022-02-18 DOI:10.1155/2022/4709300
Changxi Chen, Hongliang Li, Jian Song, Cheng Zhang, Mengting Li, Y. Mao, Aiming Liu, J. Du
{"title":"Role of Apolipoprotein A1 in PPAR Signaling Pathway for Nonalcoholic Fatty Liver Disease","authors":"Changxi Chen, Hongliang Li, Jian Song, Cheng Zhang, Mengting Li, Y. Mao, Aiming Liu, J. Du","doi":"10.1155/2022/4709300","DOIUrl":null,"url":null,"abstract":"Peroxisome proliferator-activated receptors (PPARs) have been suggested to play crucial roles in the pathology of NAFLD with a vague understanding of the underlying mechanism. Here, we integrated large-scale literature data and clinical data to explore the potential role of the PPAR-APOA1 signaling pathway in the pathology of NAFLD. First, the signaling pathway connecting PPARs, APOA1, and NAFLD was constructed. Then, we employed clinical data to explore the association between APOA1 levels and NAFLD. In addition, we built the APOA1-driven pathway analysis to explore the potential mechanism of the APOA1-NAFLD association. Pathway analysis showed that APOA1 serves as a hubprotein connecting PPARs and NAFLD through a beneficial modulation of 16 out of 21 NAFLD upstream regulators. Each relationship within the composed pathway was supported by results from multiple previous studies. Clinical data analysis showed that an increase of APOA1 level was associated with a significantly decreased NAFLD prevalence (χ2 = 292.109; P < 0.001). When other confounding factors were adjusted, serum APOA1 level was shown as an independent risk factor for the prevalence of NAFLD (P value<.0001; OR = 0.562). Our results suggested that the three PPARs (PPARA, PPARD, and PPARG) might promote the expression and molecular transportation of APOA1 to form a PPAR-APOA1 signaling pathway that demonstrated a beneficial role in the pathogenesis of NAFLD.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/4709300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 8

Abstract

Peroxisome proliferator-activated receptors (PPARs) have been suggested to play crucial roles in the pathology of NAFLD with a vague understanding of the underlying mechanism. Here, we integrated large-scale literature data and clinical data to explore the potential role of the PPAR-APOA1 signaling pathway in the pathology of NAFLD. First, the signaling pathway connecting PPARs, APOA1, and NAFLD was constructed. Then, we employed clinical data to explore the association between APOA1 levels and NAFLD. In addition, we built the APOA1-driven pathway analysis to explore the potential mechanism of the APOA1-NAFLD association. Pathway analysis showed that APOA1 serves as a hubprotein connecting PPARs and NAFLD through a beneficial modulation of 16 out of 21 NAFLD upstream regulators. Each relationship within the composed pathway was supported by results from multiple previous studies. Clinical data analysis showed that an increase of APOA1 level was associated with a significantly decreased NAFLD prevalence (χ2 = 292.109; P < 0.001). When other confounding factors were adjusted, serum APOA1 level was shown as an independent risk factor for the prevalence of NAFLD (P value<.0001; OR = 0.562). Our results suggested that the three PPARs (PPARA, PPARD, and PPARG) might promote the expression and molecular transportation of APOA1 to form a PPAR-APOA1 signaling pathway that demonstrated a beneficial role in the pathogenesis of NAFLD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载脂蛋白A1在非酒精性脂肪肝PPAR信号通路中的作用
过氧化物酶体增殖物激活受体(PPARs)已被认为在NAFLD的病理学中起着至关重要的作用,但对其潜在机制的理解尚不明确。在这里,我们整合了大规模的文献数据和临床数据,以探索PPAR-APOA1信号通路在NAFLD病理中的潜在作用。首先,构建了连接PPARs、APOA1和NAFLD的信号通路。然后,我们利用临床数据来探讨APOA1水平与NAFLD之间的关系。此外,我们建立了APOA1驱动的通路分析,以探索APOA1-NAFLD关联的潜在机制。通路分析表明,APOA1作为连接PPARs和NAFLD的枢纽蛋白,通过对21个NAFLD上游调节因子中的16个进行有益的调节。复合途径中的每一种关系都得到了先前多项研究的结果的支持。临床数据分析表明,APOA1水平的升高与NAFLD患病率的显著降低有关(χ2=292.109;P<0.001),血清APOA1水平是NAFLD患病率的独立危险因素(P值<.0001;OR=0.562)。我们的结果表明,三种PPAR(PPARA、PPARD和PPARG)可能促进APOA1的表达和分子转运,形成PPAR-APOA1信号通路,在NAFLD的发病机制中发挥有益作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
期刊最新文献
Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. Shared Mechanisms in Pparγ1sv and Pparγ2 Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of Pparγ during Adipogenesis. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1