Poonam Yadav, V. Shelke, Apurva Patrike, M. Shelke
{"title":"Sodium Based Batteries: Development, Commercialization Journey and New Emerging Chemistries","authors":"Poonam Yadav, V. Shelke, Apurva Patrike, M. Shelke","doi":"10.1093/oxfmat/itac019","DOIUrl":null,"url":null,"abstract":"\n Development, commercialization, and use of LIBs will reach their peak soon. At present, this is posing the future risk of supply of raw materials for LIBs due to their restricted distribution and lack of effective Li-recycling technology. SBBs are considered the best alternative to LIBs due to their similarity in chemistries and fabrication techniques. However, SBB technology does not have high energy density and is not mature enough yet to meet the energy requirement of wide application sectors. Scientists are optimizing different anode, cathode, and electrolyte materials, and fabrication techniques to boost the electrochemical performance of SBB. Several companies have been founded to commercialize the SBB technology. This review summarizes the development of different SBB chemistries and their commercialization by companies. It also discusses chemistries that seem promising in the future development and commercialization of SBBs.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itac019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Development, commercialization, and use of LIBs will reach their peak soon. At present, this is posing the future risk of supply of raw materials for LIBs due to their restricted distribution and lack of effective Li-recycling technology. SBBs are considered the best alternative to LIBs due to their similarity in chemistries and fabrication techniques. However, SBB technology does not have high energy density and is not mature enough yet to meet the energy requirement of wide application sectors. Scientists are optimizing different anode, cathode, and electrolyte materials, and fabrication techniques to boost the electrochemical performance of SBB. Several companies have been founded to commercialize the SBB technology. This review summarizes the development of different SBB chemistries and their commercialization by companies. It also discusses chemistries that seem promising in the future development and commercialization of SBBs.