Advanced exergy analysis of the turbojet engine main components considering mexogenous, endogenous, exegenous, avoidable and unavoidable exergy destructions
{"title":"Advanced exergy analysis of the turbojet engine main components considering mexogenous, endogenous, exegenous, avoidable and unavoidable exergy destructions","authors":"Hakan Caliskan , Selcuk Ekici , Yasin Sohret","doi":"10.1016/j.jppr.2022.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, exergy dynamic and advanced exergy analyses are applied to the turbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidable exergies under the environment conditions of 15 °C temperature and 1 bar pressure. The maximum exergy point in the turbojet engine is found for the combustor in which C<sub>11</sub>H<sub>23</sub> (Jet-A1) fuel is combusted with air, while the minimum one is determined for the air compressor head where the free air enters. The combustion chamber has the maximum fuel, product and irreversibility rates and the air compressor has the minimum fuel and product exergy values, while the minimum irreversibility is found for the turbine. Maximum improvement potential rate is found for the combustion chamber (5141.27 kW), while minimum rate is determined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergy efficiency (97.20%) due to its expansion process, while combustion chamber component has the lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel. Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergy dynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, air compressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively. Considering all results, the combustion chamber is the primer component to be handled for better efficiency and improvement.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"11 3","pages":"Pages 391-400"},"PeriodicalIF":5.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X22000554/pdfft?md5=822c307d1d72457c49085298d1324983&pid=1-s2.0-S2212540X22000554-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X22000554","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4
Abstract
In this study, exergy dynamic and advanced exergy analyses are applied to the turbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidable exergies under the environment conditions of 15 °C temperature and 1 bar pressure. The maximum exergy point in the turbojet engine is found for the combustor in which C11H23 (Jet-A1) fuel is combusted with air, while the minimum one is determined for the air compressor head where the free air enters. The combustion chamber has the maximum fuel, product and irreversibility rates and the air compressor has the minimum fuel and product exergy values, while the minimum irreversibility is found for the turbine. Maximum improvement potential rate is found for the combustion chamber (5141.27 kW), while minimum rate is determined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergy efficiency (97.20%) due to its expansion process, while combustion chamber component has the lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel. Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergy dynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, air compressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively. Considering all results, the combustion chamber is the primer component to be handled for better efficiency and improvement.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.