UNCERTAINTY QUANTIFICATION OF SELF-PROPULSION ANALYSES WITH RANS-CFD AND COMPARISON WITH FULL-SCALE SHIP TRIALS

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-10-01 DOI:10.21278/brod73406
A. Z. Saydam, Gözde Nur Küçüksu, M. Insel, Serhan Gökçay
{"title":"UNCERTAINTY QUANTIFICATION OF SELF-PROPULSION ANALYSES WITH RANS-CFD AND COMPARISON WITH FULL-SCALE SHIP TRIALS","authors":"A. Z. Saydam, Gözde Nur Küçüksu, M. Insel, Serhan Gökçay","doi":"10.21278/brod73406","DOIUrl":null,"url":null,"abstract":"RANS-CFD is a well-established tool with widespread use in maritime industry and research. Valuable information might be extracted from the results of such simulations in terms of ship resistance and flow field variables. With recent advancements in computational power, it became possible to investigate the performance of ships in self-propulsion conditions with RANS method. This paper presents the results of a study in which self-propulsion analyses of a small size product/oil tanker has been carried out at ship scale. The methodology proposed in this study makes use of open water propeller performance predictions, resistance analyses at model scale and self-propulsion computations at ship scale for a minimum of 2 different propeller loadings to obtain the self-propulsion point and respective performance parameters. In order to speed up the time-consuming self-propulsion computations, these cases have been solved with a single-phase approach. Resistance predictions have been compared with experimental findings. Uncertainty associated with prediction of resistance and thrust has been quantified. Additionally, sea trials have been conducted on the subject vessel and its two sisters and measured delivered power data have been used for evaluating the capability of the numerical method in self-propulsion predictions. Comparison of results indicate that the proposed self-propulsion computation methodology with RANS CFD at ship scale is capable of predicting delivered power with sufficient accuracy at an acceptable computational cost.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 5

Abstract

RANS-CFD is a well-established tool with widespread use in maritime industry and research. Valuable information might be extracted from the results of such simulations in terms of ship resistance and flow field variables. With recent advancements in computational power, it became possible to investigate the performance of ships in self-propulsion conditions with RANS method. This paper presents the results of a study in which self-propulsion analyses of a small size product/oil tanker has been carried out at ship scale. The methodology proposed in this study makes use of open water propeller performance predictions, resistance analyses at model scale and self-propulsion computations at ship scale for a minimum of 2 different propeller loadings to obtain the self-propulsion point and respective performance parameters. In order to speed up the time-consuming self-propulsion computations, these cases have been solved with a single-phase approach. Resistance predictions have been compared with experimental findings. Uncertainty associated with prediction of resistance and thrust has been quantified. Additionally, sea trials have been conducted on the subject vessel and its two sisters and measured delivered power data have been used for evaluating the capability of the numerical method in self-propulsion predictions. Comparison of results indicate that the proposed self-propulsion computation methodology with RANS CFD at ship scale is capable of predicting delivered power with sufficient accuracy at an acceptable computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
trans-CFD自推进分析的不确定性量化及其与实船试验的比较
RANS-CFD是一种成熟的工具,在海事工业和研究中广泛使用。根据船舶阻力和流场变量,可以从这种模拟的结果中提取有价值的信息。随着计算能力的最新进步,用RANS方法研究船舶在自推进条件下的性能成为可能。本文介绍了一项研究的结果,在该研究中,对一艘小型产品/油轮进行了船舶尺度的自推进分析。本研究中提出的方法利用开放水域螺旋桨性能预测、模型规模的阻力分析和船舶规模的自推进计算,针对至少2种不同的螺旋桨载荷,以获得自推进点和各自的性能参数。为了加快耗时的自推进计算,这些情况已经用单相方法解决。阻力预测已与实验结果进行了比较。与阻力和推力预测相关的不确定性已被量化。此外,还对该船及其两个姊妹船进行了海上试验,测量的输送功率数据已用于评估数值方法在自推进预测中的能力。结果比较表明,所提出的自推进计算方法与RANS CFD在船舶尺度上能够以可接受的计算成本以足够的精度预测输送功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1