Probable maximum flood: the potential for estimation in the UK using ReFH2

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2023-03-06 DOI:10.2166/nh.2023.117
T. Haxton, G. Vesuviano, Samuel Pucknell, T. Kjeldsen
{"title":"Probable maximum flood: the potential for estimation in the UK using ReFH2","authors":"T. Haxton, G. Vesuviano, Samuel Pucknell, T. Kjeldsen","doi":"10.2166/nh.2023.117","DOIUrl":null,"url":null,"abstract":"\n The current reservoir safety guidance within the UK recommends the use of the FSR/FEH rainfall-runoff model to estimate PMF (probable maximum flood) peak flows for reservoirs within the highest risk category (A). However, the FSR/FEH model has been superseded by the ReFH2 rainfall-runoff model for all other flood risk purposes in the UK. This study develops a new modelling framework for PMF estimation using ReFH2 by translating the assumptions made within the current FSR/FEH PMF procedure and applying these within the ReFH2 rainfall-runoff model. Peak flows from the methodology are compared with those from the FSR/FEH model for 400+ catchments. The study highlights the potential for ReFH2 to be used as the rainfall-runoff model for all return periods, up to and including the PMF, thereby paving the way for using the ReFH2 model for reservoir safety studies.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.117","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The current reservoir safety guidance within the UK recommends the use of the FSR/FEH rainfall-runoff model to estimate PMF (probable maximum flood) peak flows for reservoirs within the highest risk category (A). However, the FSR/FEH model has been superseded by the ReFH2 rainfall-runoff model for all other flood risk purposes in the UK. This study develops a new modelling framework for PMF estimation using ReFH2 by translating the assumptions made within the current FSR/FEH PMF procedure and applying these within the ReFH2 rainfall-runoff model. Peak flows from the methodology are compared with those from the FSR/FEH model for 400+ catchments. The study highlights the potential for ReFH2 to be used as the rainfall-runoff model for all return periods, up to and including the PMF, thereby paving the way for using the ReFH2 model for reservoir safety studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可能的最大洪水:在英国使用ReFH2进行估算的可能性
英国目前的水库安全指南建议使用FSR/FEH降雨径流模型来估计最高风险类别(A)内水库的PMF(可能的最大洪水)峰值流量。然而,在英国,用于所有其他洪水风险目的的FSR/FEH模型已被ReFH2降雨-径流模型所取代。本研究通过转换当前FSR/FEH-PMF程序中的假设并将其应用于ReFH2降雨量-径流模型中,为使用ReFH2的PMF估计开发了一个新的建模框架。将该方法的峰值流量与400多个集水区的FSR/FEH模型的峰值流量进行比较。该研究强调了ReFH2作为所有重现期(包括PMF)的降雨径流模型的潜力,从而为使用ReFH2模型进行水库安全研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1