Use of basin outlet velocity to determine the basin concentration time and storage coefficient

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2022-10-03 DOI:10.2166/nh.2022.066
Jinwook Lee, C. Yoo
{"title":"Use of basin outlet velocity to determine the basin concentration time and storage coefficient","authors":"Jinwook Lee, C. Yoo","doi":"10.2166/nh.2022.066","DOIUrl":null,"url":null,"abstract":"\n Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2022.066","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用流域出口速度确定流域集中时间和蓄水系数
流域集中时间(Tc)和蓄水系数(K)的经验公式大多侧重于估算正常条件下的代表值,其重现期最长为100-200年。在更极端的条件下,应该修改这些参数以考虑更快的速度条件。本研究的主要目的是检查确定这些参数的可能性,这些参数对应于盆地出口处的给定峰值速度(vp)。这个问题涉及两个问题;一个是Tc是否能被vp完全表达,另一个是在极端条件下K是否仍与Tc成线性比例。在本研究中,通过对这些参数的理论审查,以及对韩国忠州大坝流域收集的降雨-径流事件的分析,解决了这两个问题。观察到,随着vp的增加,Tc和K降低。它们的关系接近相反,但呈线性比例。也就是说,Tc、K和vp之间存在强线性关系。结果,发现K与Tc的比率几乎相同,而与vp无关。无论降雨事件的大小,盆地的这一比率都可以被假设为不变的盆地特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1