{"title":"Dynamic control of polarized thermal emission from VO2 nanofins","authors":"Caleb Estherby, M. Arnold, M. Tai, A. Gentle","doi":"10.1117/1.JPE.11.042111","DOIUrl":null,"url":null,"abstract":"Abstract. We demonstrate switchable polarized thermal emission from VO2 nanofin stacks fabricated by co-deposition, etching, and oxidation. We find that reverse switching of the thermal emission is enabled by a reflecting underlayer and induced by either short oxidation time or additional deposition of a reflecting underlayer. Observed thermal emission is well explained by a biaxial Bruggeman effective medium model, which predicts the strong polarization change for aligned fin layers in the micron thickness range. The dominant polarization of the emission is modulated by the presence of a reflector, oxidation of the fins, fin fill-factor, and structural anisotropy. Normal incidence polarized emittance change of up to 0.6 is theoretically possible, and we were able to demonstrate a change of 0.34, similar to that predicted by the model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.042111","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. We demonstrate switchable polarized thermal emission from VO2 nanofin stacks fabricated by co-deposition, etching, and oxidation. We find that reverse switching of the thermal emission is enabled by a reflecting underlayer and induced by either short oxidation time or additional deposition of a reflecting underlayer. Observed thermal emission is well explained by a biaxial Bruggeman effective medium model, which predicts the strong polarization change for aligned fin layers in the micron thickness range. The dominant polarization of the emission is modulated by the presence of a reflector, oxidation of the fins, fin fill-factor, and structural anisotropy. Normal incidence polarized emittance change of up to 0.6 is theoretically possible, and we were able to demonstrate a change of 0.34, similar to that predicted by the model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.