{"title":"A Hydrogen Iron Flow Battery with High Current Density and Long Cyclability Enabled Through Circular Water Management","authors":"Litao Yan, Yuyan Shao, Wei Wang","doi":"10.1002/eem2.12605","DOIUrl":null,"url":null,"abstract":"<p>The hydrogen-iron (HyFe) flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries. However, its operation at high current density (high power) and over continuous cycling testing has yet to be demonstrated. In this article, we discuss our design and demonstration of a water-management strategy that supports high current and long-cycling performance of a HyFe flow cell. Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm<sup>−2</sup> during the charge process. At higher charge current density, more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes. Our water-management approach is based on water vapor feeding in the hydrogen electrode and water evaporation in the iron electrode, thus enabling high current density operation of 300 mA cm<sup>−2</sup>.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"6 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12605","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12605","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The hydrogen-iron (HyFe) flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries. However, its operation at high current density (high power) and over continuous cycling testing has yet to be demonstrated. In this article, we discuss our design and demonstration of a water-management strategy that supports high current and long-cycling performance of a HyFe flow cell. Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm−2 during the charge process. At higher charge current density, more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes. Our water-management approach is based on water vapor feeding in the hydrogen electrode and water evaporation in the iron electrode, thus enabling high current density operation of 300 mA cm−2.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.