Analysis on the Impact Behaviors of E and S-glass Composite Elbow Pipe Joints Exposed to Impact Loading Followed by Axial Compression

Sujith Bobba, Z. Leman, S. Sapuan, E. S. Zainudin
{"title":"Analysis on the Impact Behaviors of E and S-glass Composite Elbow Pipe Joints Exposed to Impact Loading Followed by Axial Compression","authors":"Sujith Bobba, Z. Leman, S. Sapuan, E. S. Zainudin","doi":"10.4018/IJMMME.2019070102","DOIUrl":null,"url":null,"abstract":"This article investigates the effects of impact and compressive behaviors of impacted E-glass/epoxy and S-glass/epoxy composite elbow pipe joints. In a bid to measure the transverse impact and residual compressive strength, the composite elbow pipe joints were subjected to impact test at room temperature, followed by the axial compression test. Moreover, various impact energy levels of 10, 12.5, and 15 J were utilized to test the elbow pipe joints using an instrumented impact testing machine at room temperature. Results indicated that the force–deflection behavior and failure mechanism was more than impact energy with the type of material used. Compressive strength commonly decreases with the increase in the impact energy and the type of material used.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJMMME.2019070102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMMME.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the effects of impact and compressive behaviors of impacted E-glass/epoxy and S-glass/epoxy composite elbow pipe joints. In a bid to measure the transverse impact and residual compressive strength, the composite elbow pipe joints were subjected to impact test at room temperature, followed by the axial compression test. Moreover, various impact energy levels of 10, 12.5, and 15 J were utilized to test the elbow pipe joints using an instrumented impact testing machine at room temperature. Results indicated that the force–deflection behavior and failure mechanism was more than impact energy with the type of material used. Compressive strength commonly decreases with the increase in the impact energy and the type of material used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击载荷后轴压作用下E、s玻璃复合材料弯头管接头冲击性能分析
本文研究了冲击E玻璃/环氧树脂和S玻璃/环氧复合弯管接头的冲击和压缩性能的影响。为了测量横向冲击和残余抗压强度,对复合材料弯管接头进行了室温冲击试验,然后进行了轴向压缩试验。此外,在室温下,使用装有仪器的冲击试验机,利用10、12.5和15J的各种冲击能级对弯管接头进行试验。结果表明,在所使用的材料类型下,力-挠度行为和破坏机制大于冲击能量。抗压强度通常随着冲击能量和所用材料类型的增加而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
21
期刊最新文献
Ultrasonic Bonding of Ag Ribbon on Si Wafers With Various Backside Metallization Window analysis and MPI for efficiency and productivity assessment under fuzzy data Low-Temperature Direct Bonding of 3D-IC Packages and Power IC Modules Using Ag Nanotwinned Thin Films Influence of cutting parameters on machinability of DSS 2205 and SDSS 2507 materials during milling Island-matrix inhomogeneous deformation behavior, formation of deformation band and BUT forming of DP steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1