{"title":"Locally R-optimal designs for a class of nonlinear multiple regression models","authors":"Lei He, R. Yue","doi":"10.1080/24754269.2022.2153540","DOIUrl":null,"url":null,"abstract":"This paper concerns with optimal designs for a wide class of nonlinear models with information driven by the linear predictor. The aim of this study is to generate an R-optimal design which minimizes the product of the main diagonal entries of the inverse of the Fisher information matrix at certain values of the parameters. An equivalence theorem for the locally R-optimal designs is provided in terms of the intensity function. Analytic solutions for the locally saturated R-optimal designs are derived for the models having linear predictors with and without intercept, respectively. The particle swarm optimization method has been employed to generate locally non-saturated R-optimal designs. Numerical examples are presented for illustration of the locally R-optimal designs for Poisson regression models and proportional hazards regression models.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"107 - 120"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2153540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper concerns with optimal designs for a wide class of nonlinear models with information driven by the linear predictor. The aim of this study is to generate an R-optimal design which minimizes the product of the main diagonal entries of the inverse of the Fisher information matrix at certain values of the parameters. An equivalence theorem for the locally R-optimal designs is provided in terms of the intensity function. Analytic solutions for the locally saturated R-optimal designs are derived for the models having linear predictors with and without intercept, respectively. The particle swarm optimization method has been employed to generate locally non-saturated R-optimal designs. Numerical examples are presented for illustration of the locally R-optimal designs for Poisson regression models and proportional hazards regression models.