Locally R-optimal designs for a class of nonlinear multiple regression models

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2022-12-12 DOI:10.1080/24754269.2022.2153540
Lei He, R. Yue
{"title":"Locally R-optimal designs for a class of nonlinear multiple regression models","authors":"Lei He, R. Yue","doi":"10.1080/24754269.2022.2153540","DOIUrl":null,"url":null,"abstract":"This paper concerns with optimal designs for a wide class of nonlinear models with information driven by the linear predictor. The aim of this study is to generate an R-optimal design which minimizes the product of the main diagonal entries of the inverse of the Fisher information matrix at certain values of the parameters. An equivalence theorem for the locally R-optimal designs is provided in terms of the intensity function. Analytic solutions for the locally saturated R-optimal designs are derived for the models having linear predictors with and without intercept, respectively. The particle swarm optimization method has been employed to generate locally non-saturated R-optimal designs. Numerical examples are presented for illustration of the locally R-optimal designs for Poisson regression models and proportional hazards regression models.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"107 - 120"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2153540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns with optimal designs for a wide class of nonlinear models with information driven by the linear predictor. The aim of this study is to generate an R-optimal design which minimizes the product of the main diagonal entries of the inverse of the Fisher information matrix at certain values of the parameters. An equivalence theorem for the locally R-optimal designs is provided in terms of the intensity function. Analytic solutions for the locally saturated R-optimal designs are derived for the models having linear predictors with and without intercept, respectively. The particle swarm optimization method has been employed to generate locally non-saturated R-optimal designs. Numerical examples are presented for illustration of the locally R-optimal designs for Poisson regression models and proportional hazards regression models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类非线性多元回归模型的局部r最优设计
本文研究一类由线性预测器驱动信息的非线性模型的优化设计问题。本研究的目的是生成一个r -最优设计,该设计使Fisher信息矩阵逆的主要对角线项在某些参数值下的乘积最小。给出了用强度函数表示的局部r -最优设计的等价定理。分别推导了具有带截距和无截距线性预测模型的局部饱和r -最优设计的解析解。采用粒子群优化方法生成局部不饱和r -最优设计。给出了泊松回归模型和比例风险回归模型的局部r -最优设计的数值实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1