Laccase-assisted bioremediation of pesticides: Scope and challenges

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Mini-reviews in Organic Chemistry Pub Date : 2022-11-17 DOI:10.2174/1570193x20666221117161033
N. Pal, N. Das, C. Paul, M. Maitra
{"title":"Laccase-assisted bioremediation of pesticides: Scope and challenges","authors":"N. Pal, N. Das, C. Paul, M. Maitra","doi":"10.2174/1570193x20666221117161033","DOIUrl":null,"url":null,"abstract":"\n\nLaccase (Benzenediol: oxygen oxidoreductase; E.C.1.10.3.2), a multicopper oxidase that is a known lignin-degrading enzyme, can catalyse an ample array of substrates, from phenolic, non-phenolic compounds, aromatic amines, diamines, heterocyclic compounds to organic/inorganic metal compounds etc., bestowed they have not too high redox potentials. Despite many laccase-producing organisms like bacteria, insects, plants, and animals, white rot filamentous fungi are the best producers of this enzyme. In the presence of laccase, pesticides (fungicides, herbicides, insecticides, etc.) of various chemical compositions (organophosphates, organochlorines, carbamates, pyrethrin & pyrethroids etc.) are oxidized into the water with collateral reduction of four electrons of molecular oxygen with various efficiencies. Bioremediation efficiency can be increased in the presence of various natural or synthetic mediators, viz. ABTS, violuric acid, 1- hydroxy benzotriazole, vanillin, syringaldehyde, PEG, etc. Immobilized laccase on various supporting materials increased the enzyme's stability, reliability, and reusability for continuous application, particularly for industrial processes. The present review discusses the structure, catalytic cycle, general mechanism of oxidation, and various scopes and challenges of pesticide degradation by this multifaceted biocatalyst which could lead to a green sustainable environment.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666221117161033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Laccase (Benzenediol: oxygen oxidoreductase; E.C.1.10.3.2), a multicopper oxidase that is a known lignin-degrading enzyme, can catalyse an ample array of substrates, from phenolic, non-phenolic compounds, aromatic amines, diamines, heterocyclic compounds to organic/inorganic metal compounds etc., bestowed they have not too high redox potentials. Despite many laccase-producing organisms like bacteria, insects, plants, and animals, white rot filamentous fungi are the best producers of this enzyme. In the presence of laccase, pesticides (fungicides, herbicides, insecticides, etc.) of various chemical compositions (organophosphates, organochlorines, carbamates, pyrethrin & pyrethroids etc.) are oxidized into the water with collateral reduction of four electrons of molecular oxygen with various efficiencies. Bioremediation efficiency can be increased in the presence of various natural or synthetic mediators, viz. ABTS, violuric acid, 1- hydroxy benzotriazole, vanillin, syringaldehyde, PEG, etc. Immobilized laccase on various supporting materials increased the enzyme's stability, reliability, and reusability for continuous application, particularly for industrial processes. The present review discusses the structure, catalytic cycle, general mechanism of oxidation, and various scopes and challenges of pesticide degradation by this multifaceted biocatalyst which could lead to a green sustainable environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
漆酶辅助农药生物修复:范围和挑战
漆酶(苯二醇);氧氧化还原酶;ec .1.10.3.2)是一种多铜氧化酶,是一种已知的木质素降解酶,可以催化大量的底物,从酚类、非酚类化合物、芳香胺、二胺、杂环化合物到有机/无机金属化合物等,只要它们没有太高的氧化还原电位。尽管有许多产生漆酶的生物,如细菌、昆虫、植物和动物,但白腐丝状真菌是这种酶的最佳制造者。在漆酶存在的情况下,各种化学成分的农药(杀菌剂、除草剂、杀虫剂等)(有机磷、有机氯、氨基甲酸酯、除虫菊酯和拟除虫菊酯等)被氧化到水中,分子氧的四个电子以不同的效率间接还原。在各种天然或合成介质的存在下,生物修复效率可以提高,如ABTS、紫尿酸、1-羟基苯并三唑、香兰素、丁香醛、聚乙二醇等。固定化漆酶在各种载体材料上增加了酶的稳定性、可靠性和可重复使用性,特别是在工业过程中。本文综述了该生物催化剂的结构、催化循环、氧化的一般机理,以及该生物催化剂降解农药的各种范围和挑战,以期实现绿色可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mini-reviews in Organic Chemistry
Mini-reviews in Organic Chemistry 化学-有机化学
CiteScore
4.50
自引率
4.30%
发文量
116
审稿时长
>12 weeks
期刊介绍: Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges. The journal encourages submission of reviews on emerging fields of organic chemistry including: Bioorganic Chemistry Carbohydrate Chemistry Chemical Biology Chemical Process Research Computational Organic Chemistry Development of Synthetic Methodologies Functional Organic Materials Heterocyclic Chemistry Macromolecular Chemistry Natural Products Isolation And Synthesis New Synthetic Methodology Organic Reactions Organocatalysis Organometallic Chemistry Theoretical Organic Chemistry Polymer Chemistry Stereochemistry Structural Investigations Supramolecular Chemistry
期刊最新文献
Research Progress on Compounds with Antioxidant Activity Derived from Microorganisms Synthesis of Indazole Scaffolds from Arynes and Suitable Coupling Partners - A Brief Review Multifunctional Smart Nano Biopolymers for Programmed Controlled Release of Biomolecules and Therapeutic Agents: An Overview on Modern Emerging Systems A Comprehensive Review on History, Sources, Biosynthesis, Chemical Synthesis and Applications of Stilbenes Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Imidazole Alkaloids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1