MediCoSpace: Visual Decision-Support for Doctor-Patient Consultations using Medical Concept Spaces from EHRs

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Management Information Systems Pub Date : 2022-09-26 DOI:10.1145/3564275
Sanne van der Linden, R. Sevastjanova, M. Funk, Mennatallah El-Assady
{"title":"MediCoSpace: Visual Decision-Support for Doctor-Patient Consultations using Medical Concept Spaces from EHRs","authors":"Sanne van der Linden, R. Sevastjanova, M. Funk, Mennatallah El-Assady","doi":"10.1145/3564275","DOIUrl":null,"url":null,"abstract":"Healthcare systems are under pressure from an aging population, rising costs, and increasingly complex conditions and treatments. Although data are determined to play a bigger role in how doctors diagnose and prescribe treatments, they struggle due to a lack of time and an abundance of structured and unstructured information. To address this challenge, we introduce MediCoSpace, a visual decision-support tool for more efficient doctor-patient consultations. The tool links patient reports to past and present diagnoses, diseases, drugs, and treatments, both for the current patient and other patients in comparable situations. MediCoSpace uses textual medical data, deep-learning supported text analysis and concept spaces to facilitate a visual discovery process. The tool is evaluated by five medical doctors. The results show that MediCoSpace facilitates a promising, yet complex way to discover unlikely relations and thus suggests a path toward the development of interactive visual tools to provide physicians with more holistic diagnoses and personalized, dynamic treatments for patients.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":"14 1","pages":"1 - 20"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Healthcare systems are under pressure from an aging population, rising costs, and increasingly complex conditions and treatments. Although data are determined to play a bigger role in how doctors diagnose and prescribe treatments, they struggle due to a lack of time and an abundance of structured and unstructured information. To address this challenge, we introduce MediCoSpace, a visual decision-support tool for more efficient doctor-patient consultations. The tool links patient reports to past and present diagnoses, diseases, drugs, and treatments, both for the current patient and other patients in comparable situations. MediCoSpace uses textual medical data, deep-learning supported text analysis and concept spaces to facilitate a visual discovery process. The tool is evaluated by five medical doctors. The results show that MediCoSpace facilitates a promising, yet complex way to discover unlikely relations and thus suggests a path toward the development of interactive visual tools to provide physicians with more holistic diagnoses and personalized, dynamic treatments for patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MediCoSpace:使用EHR的医学概念空间为医患咨询提供视觉决策支持
医疗保健系统面临着来自人口老龄化、成本上升以及日益复杂的条件和治疗的压力。尽管数据在医生的诊断和处方治疗中发挥了更大的作用,但由于缺乏时间和丰富的结构化和非结构化信息,他们很难。为了应对这一挑战,我们引入了MediCoSpace,这是一个可视化的决策支持工具,可以提高医患咨询的效率。该工具将患者报告与过去和现在的诊断、疾病、药物和治疗联系起来,既适用于当前患者,也适用于处于类似情况的其他患者。MediCoSpace使用文本医学数据、深度学习支持的文本分析和概念空间来促进视觉发现过程。该工具由五名医生进行评估。结果表明,MediCoSpace促进了一种有前途但复杂的方法来发现不可能的关系,从而为开发交互式可视化工具提供了一条道路,为医生提供更全面的诊断和个性化的动态治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.30
自引率
20.00%
发文量
60
期刊最新文献
From Dissonance to Dialogue: A Token-Based Approach to Bridge the Gap Between Manufacturers and Customers A Process Mining Method for Inter-organizational Business Process Integration Introduction to the Special Issue on IT-enabled Business Management and Decision Making in the (Post) Covid-19 Era Non-Monotonic Generation of Knowledge Paths for Context Understanding How Should Enterprises Quantify and Analyze (Multi-Party) APT Cyber-Risk Exposure in their Industrial IoT Network?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1