Development of Methods for Obtaining Carbon Adsorbents Based on Angren Coal and Oil Residues

G. Gulomova, S. Shamansurov, D. M. Rakhmatova
{"title":"Development of Methods for Obtaining Carbon Adsorbents Based on Angren Coal and Oil Residues","authors":"G. Gulomova, S. Shamansurov, D. M. Rakhmatova","doi":"10.24000/0409-2961-2023-3-68-74","DOIUrl":null,"url":null,"abstract":"Currently, activated carbon adsorbents are widely used in the world for industrial wastewater treatment from various organic compounds, sorption of heavy metal ions and life-threatening radioactive substances. Carbon adsorbents with hydrophobic properties are mainly modified based on the brown coal, coke, scape, and bark of plants. The methods of manufacturing coal adsorbents based on Angren coal, petroleum coke and asphaltenes are listed. The physicochemical composition and complete thermodynamic properties of the activated carbon adsorbent were studied. It was found that during the heat treatment of mixtures of carbonaceous raw materials, its mass is lost with increasing temperature. At the same time, the adsorption activity of iodine increases with increasing temperature. Depending on the change in temperature of the obtained carbon adsorbent samples, the calculated surface area with respect to iodine is 280.7 m2/g with a weight loss of 0.2 g. The differential heat of adsorption, isotherm, molar entropy and thermokinetics of the benzene and toluene molecules studied in the article are calculated. The adsorption of 4.5 mmol/g of benzene and 3.5 mmol/g of toluene on the activated carbon adsorbent was determined. It is noted that during the adsorption of benzene and toluene by the obtained adsorbent from activated carbon, the differential heat of reaction gradually decreases. When recalculating the isothermal adsorption of benzene and toluene on activated carbon according to the equation of the volumetric theory of micropore saturation, it was obtained that 84.5 % of benzene and 94.2 % of toluene were adsorbed on the pores of the adsorbent.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-3-68-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, activated carbon adsorbents are widely used in the world for industrial wastewater treatment from various organic compounds, sorption of heavy metal ions and life-threatening radioactive substances. Carbon adsorbents with hydrophobic properties are mainly modified based on the brown coal, coke, scape, and bark of plants. The methods of manufacturing coal adsorbents based on Angren coal, petroleum coke and asphaltenes are listed. The physicochemical composition and complete thermodynamic properties of the activated carbon adsorbent were studied. It was found that during the heat treatment of mixtures of carbonaceous raw materials, its mass is lost with increasing temperature. At the same time, the adsorption activity of iodine increases with increasing temperature. Depending on the change in temperature of the obtained carbon adsorbent samples, the calculated surface area with respect to iodine is 280.7 m2/g with a weight loss of 0.2 g. The differential heat of adsorption, isotherm, molar entropy and thermokinetics of the benzene and toluene molecules studied in the article are calculated. The adsorption of 4.5 mmol/g of benzene and 3.5 mmol/g of toluene on the activated carbon adsorbent was determined. It is noted that during the adsorption of benzene and toluene by the obtained adsorbent from activated carbon, the differential heat of reaction gradually decreases. When recalculating the isothermal adsorption of benzene and toluene on activated carbon according to the equation of the volumetric theory of micropore saturation, it was obtained that 84.5 % of benzene and 94.2 % of toluene were adsorbed on the pores of the adsorbent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于安仁煤和油渣制备碳吸附剂方法的研究进展
目前,活性炭吸附剂在世界上广泛用于处理各种有机化合物的工业废水,吸附重金属离子和危及生命的放射性物质。具有疏水性能的碳吸附剂主要是基于褐煤、焦炭、景观和植物树皮进行改性的。介绍了以鞍钢煤、石油焦和沥青质为原料制备煤吸附剂的方法。研究了活性炭吸附剂的物理化学组成和完整的热力学性质。研究发现,在含碳原料混合物的热处理过程中,其质量随着温度的升高而损失。同时,碘的吸附活性随着温度的升高而增加。根据所获得的碳吸附剂样品的温度变化,相对于碘的计算表面积为280.7m2/g,重量损失为0.2g。计算了本文研究的苯和甲苯分子的微分吸附热、等温线、摩尔熵和热动力学。测定了活性炭吸附剂对4.5mmol/g苯和3.5mmol/g甲苯的吸附。值得注意的是,从活性炭中获得的吸附剂在吸附苯和甲苯的过程中,反应差热逐渐降低。当根据微孔饱和体积理论方程重新计算苯和甲苯在活性炭上的等温吸附时,得到84.5%的苯和94.2%的甲苯吸附在吸附剂的孔上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
期刊最新文献
Analytical Methodology for Substantiating the Optimal Frequency of Scheduled Inspections of the Fire-fighting Condition of Industrial and Warehouse Buildings Increasing Geodynamic Safety by Managing Induced Seismicity During the Development of Solid Mineral Deposits Critique and Improvement of the Regulatory Framework on the Calculation of Structures for Seismic Impacts On the Problem of the Large Tires Safe Operation Improving the Labor Safety of Mining Dump Truck Drivers by Reducing the Risk of Failure of the Functional Units of the Traction Electric Drive under Operating Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1