F. Parés, H. Ventura, F. Xavier Capdevila, M. Ardanuy
{"title":"Influence of Multilayer Interlocked Fabrics Structure on Their Thermal Performance","authors":"F. Parés, H. Ventura, F. Xavier Capdevila, M. Ardanuy","doi":"10.2478/aut-2021-0038","DOIUrl":null,"url":null,"abstract":"Abstract This paper examines the influence of weaving variables such as yarn count, number of layers, warp and weft ratio, materials of the top layer, weft density and interlocking cell shape, and size on the thermal performance of multilayer interlocked woven fabrics. A split-plot design was used to construct a total of 64 fabric structures, which were assessed for thermal performance in terms of resistance to convective, conductive, and radiative heat. It was found that, for equal weft density and yarn number, protective performance improved with the number of fabric layers and with the presence of air cells between these layers, especially if air was not trapped within and could rather pass freely between the cells. An optimal combination of factors for the thermal response to the three types of heat was established via a Derringer–a much needed desirability function. The results of this paper are useful for identifying the interaction between configuration parameters and thermal performance, and hence for the design of improved heat protective clothing.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"466 - 476"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2021-0038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper examines the influence of weaving variables such as yarn count, number of layers, warp and weft ratio, materials of the top layer, weft density and interlocking cell shape, and size on the thermal performance of multilayer interlocked woven fabrics. A split-plot design was used to construct a total of 64 fabric structures, which were assessed for thermal performance in terms of resistance to convective, conductive, and radiative heat. It was found that, for equal weft density and yarn number, protective performance improved with the number of fabric layers and with the presence of air cells between these layers, especially if air was not trapped within and could rather pass freely between the cells. An optimal combination of factors for the thermal response to the three types of heat was established via a Derringer–a much needed desirability function. The results of this paper are useful for identifying the interaction between configuration parameters and thermal performance, and hence for the design of improved heat protective clothing.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.