Hadeel Adil , Hamsa Thamer , Raghda Alsayed , Muna Bufaroosha , Dina S. Ahmed , Mohammed H. Al-Mashhadani , Hassan Hashim , Amani A. Husain , Emad Yousif
{"title":"Poly(lactic acid)/clarithromycin with metals dioxides nanoparticles: Preparation and performance under ultraviolet irradiation","authors":"Hadeel Adil , Hamsa Thamer , Raghda Alsayed , Muna Bufaroosha , Dina S. Ahmed , Mohammed H. Al-Mashhadani , Hassan Hashim , Amani A. Husain , Emad Yousif","doi":"10.1016/j.mset.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Different polylactic acid (PLA) thin films containing clarithromycin and a number of metal oxide nanoparticles (magnesium, titanium, zinc, and nickel) dioxides were created. Low dosages of metal oxides (0.01% by weight) and clarithromycin (0.5% by weight) were used to make transparent films. The role of metal oxide nanoparticles and clarithromycin as UV blockers for PLA photodegradation was looked at. The durability of polymeric materials is improved more by clarithromycin in combination with metal oxides than by clarithromycin alone in PLA films. An analysis of the weight loss, surface morphology, and changes in infrared spectra of irradiated polymeric blends revealed that nickel oxide and clarithromycin together function as effective UV blockers and offer PLA a high degree of protection. Nickel oxide nanoparticles were the best addition for PLA stability. Highly alkaline metal oxides are present. Contrarily, the heteroatom and aromatic nature of clarithromycin enables it to absorb damaging radiation and function as an ultraviolet absorption. Thus, the adaptability of PLA to photodegradation was significantly improved by using a mixture of metal oxide nanoparticles and clarithromycin.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 73-84"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Different polylactic acid (PLA) thin films containing clarithromycin and a number of metal oxide nanoparticles (magnesium, titanium, zinc, and nickel) dioxides were created. Low dosages of metal oxides (0.01% by weight) and clarithromycin (0.5% by weight) were used to make transparent films. The role of metal oxide nanoparticles and clarithromycin as UV blockers for PLA photodegradation was looked at. The durability of polymeric materials is improved more by clarithromycin in combination with metal oxides than by clarithromycin alone in PLA films. An analysis of the weight loss, surface morphology, and changes in infrared spectra of irradiated polymeric blends revealed that nickel oxide and clarithromycin together function as effective UV blockers and offer PLA a high degree of protection. Nickel oxide nanoparticles were the best addition for PLA stability. Highly alkaline metal oxides are present. Contrarily, the heteroatom and aromatic nature of clarithromycin enables it to absorb damaging radiation and function as an ultraviolet absorption. Thus, the adaptability of PLA to photodegradation was significantly improved by using a mixture of metal oxide nanoparticles and clarithromycin.