S. K. Jauhar, B. Chakma, Sachin S. Kamble, Amine Belhadi
{"title":"Digital transformation technologies to analyze product returns in the e-commerce industry","authors":"S. K. Jauhar, B. Chakma, Sachin S. Kamble, Amine Belhadi","doi":"10.1108/jeim-09-2022-0315","DOIUrl":null,"url":null,"abstract":"PurposeAs e-commerce has expanded rapidly, online shopping platforms have become widespread in India and throughout the world. Product return, which has a negative effect on the E-Commerce Industry's economic and ecological sustainability, is one of the E-Commerce Industry's greatest challenges in light of the substantial increase in online transactions. The authors have analyzed the purchasing patterns of the customers to better comprehend their product purchase and return patterns.Design/methodology/approachThe authors utilized digital transformation techniques-based recency, frequency and monetary models to better understand and segment potential customers in order to address personalized strategies to increase sales, and the authors performed seller clustering using k-means and hierarchical clustering to determine why some sellers have the most sales and what products they offer that entice customers to purchase.FindingsThe authors discovered, through the application of digital transformation models to customer segmentation, that over 61.15% of consumers are likely to purchase, loyal customers and utilize firm service, whereas approximately 35% of customers have either stopped purchasing or have relatively low spending. To retain these consumer segments, special consideration and an enticing offer are required. As the authors dug deeper into the seller clustering, we discovered that the maximum number of clusters is six, while certain clusters indicate that prompt delivery of the goods plays a crucial role in customer feedback and high sales volume.Originality/valueThis is one of the rare study that develops a seller segmentation strategy by utilizing digital transformation-based methods in order to achieve seller group division.","PeriodicalId":47889,"journal":{"name":"Journal of Enterprise Information Management","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enterprise Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jeim-09-2022-0315","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeAs e-commerce has expanded rapidly, online shopping platforms have become widespread in India and throughout the world. Product return, which has a negative effect on the E-Commerce Industry's economic and ecological sustainability, is one of the E-Commerce Industry's greatest challenges in light of the substantial increase in online transactions. The authors have analyzed the purchasing patterns of the customers to better comprehend their product purchase and return patterns.Design/methodology/approachThe authors utilized digital transformation techniques-based recency, frequency and monetary models to better understand and segment potential customers in order to address personalized strategies to increase sales, and the authors performed seller clustering using k-means and hierarchical clustering to determine why some sellers have the most sales and what products they offer that entice customers to purchase.FindingsThe authors discovered, through the application of digital transformation models to customer segmentation, that over 61.15% of consumers are likely to purchase, loyal customers and utilize firm service, whereas approximately 35% of customers have either stopped purchasing or have relatively low spending. To retain these consumer segments, special consideration and an enticing offer are required. As the authors dug deeper into the seller clustering, we discovered that the maximum number of clusters is six, while certain clusters indicate that prompt delivery of the goods plays a crucial role in customer feedback and high sales volume.Originality/valueThis is one of the rare study that develops a seller segmentation strategy by utilizing digital transformation-based methods in order to achieve seller group division.
期刊介绍:
The Journal of Enterprise Information Management (JEIM) is a significant contributor to the normative literature, offering both conceptual and practical insights supported by innovative discoveries that enrich the existing body of knowledge.
Within its pages, JEIM presents research findings sourced from globally renowned experts. These contributions encompass scholarly examinations of cutting-edge theories and practices originating from leading research institutions. Additionally, the journal features inputs from senior business executives and consultants, who share their insights gleaned from specific enterprise case studies. Through these reports, readers benefit from a comparative analysis of different environmental contexts, facilitating valuable learning experiences.
JEIM's distinctive blend of theoretical analysis and practical application fosters comprehensive discussions on commercial discoveries. This approach enhances the audience's comprehension of contemporary, applied, and rigorous information management practices, which extend across entire enterprises and their intricate supply chains.