M. Belhadi, S. Hamasha, Ali Alahmer, Xin Wei, Abdallah Alakayleh
{"title":"Power Law Creep Behavior Model Of 3rd Generation Lead-Free Alloys Considering Isothermal Aging","authors":"M. Belhadi, S. Hamasha, Ali Alahmer, Xin Wei, Abdallah Alakayleh","doi":"10.1115/1.4062894","DOIUrl":null,"url":null,"abstract":"\n In realistic applications, the solder joint is continually subjected to thermal-mechanical stress due to the difference in the coefficient of thermal expansion (CTE) between the printed circuit board (PCB) substrate and the electronic packaging components. Creep and fatigue processes were the most common causes of failure in electronic assemblies. Under isothermal aging, creep deformation becomes more prominent. The aged microstructure was recognized by intermetallic coarsening and the appearance of intergranular fracture generated by dynamic recrystallization in the bulk solder joint. In this study, the influence of Bi content on the creep behaviors of solder joints was investigated under various aging conditions. Three lead-free solder alloys, including SAC305, SAC-3Bi, and SAC-6Bi, are tested at room temperature. For each alloy, preliminary micro-indentation tests were conducted to define three stress levels for distinct aging conditions. After each test, displacement vs. time data was gathered. A novel approach based on an empirical model was developed to systematically examine the development of the steady state creep rate. A power dependency prediction model was developed to investigate the relationship between creep strain rate and stress levels. The steady-state creep rate of SAC305 is significantly higher than that of SAC-Bi alloys owing to the presence of bismuth (Bi) in the solid solution at room temperature. The creep properties showed less variation after 100 hours of aging. SAC-Bi alloys showed less coarsening of the IMC precipitates after aging than SAC305. In the SAC-Bi solder alloys, combinations of precipitate and solid solution hardening mechanisms were observed, while Ag3Sn particles were the dominant strengthening mechanism in the SAC305 alloy system.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062894","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
In realistic applications, the solder joint is continually subjected to thermal-mechanical stress due to the difference in the coefficient of thermal expansion (CTE) between the printed circuit board (PCB) substrate and the electronic packaging components. Creep and fatigue processes were the most common causes of failure in electronic assemblies. Under isothermal aging, creep deformation becomes more prominent. The aged microstructure was recognized by intermetallic coarsening and the appearance of intergranular fracture generated by dynamic recrystallization in the bulk solder joint. In this study, the influence of Bi content on the creep behaviors of solder joints was investigated under various aging conditions. Three lead-free solder alloys, including SAC305, SAC-3Bi, and SAC-6Bi, are tested at room temperature. For each alloy, preliminary micro-indentation tests were conducted to define three stress levels for distinct aging conditions. After each test, displacement vs. time data was gathered. A novel approach based on an empirical model was developed to systematically examine the development of the steady state creep rate. A power dependency prediction model was developed to investigate the relationship between creep strain rate and stress levels. The steady-state creep rate of SAC305 is significantly higher than that of SAC-Bi alloys owing to the presence of bismuth (Bi) in the solid solution at room temperature. The creep properties showed less variation after 100 hours of aging. SAC-Bi alloys showed less coarsening of the IMC precipitates after aging than SAC305. In the SAC-Bi solder alloys, combinations of precipitate and solid solution hardening mechanisms were observed, while Ag3Sn particles were the dominant strengthening mechanism in the SAC305 alloy system.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.