Shear modules of claysand mixtures using bender element test

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2018-06-01 DOI:10.18690/actageotechslov.15.1.3-15.2018
A. Cabalar, M. M. Khalaf, Z. Karabash
{"title":"Shear modules of claysand mixtures using bender element test","authors":"A. Cabalar, M. M. Khalaf, Z. Karabash","doi":"10.18690/actageotechslov.15.1.3-15.2018","DOIUrl":null,"url":null,"abstract":"Bender-element (BE) tests were conducted on clay-sand mixtures to investigate the variation of small strain-shear modulus (Gmax) with the sand content and the physical characteristics (size, shape) of the sand grains in the mixtures. Three different gradations (0.6–0.3 mm, 1.0–0.6 mm and 2.0–1.0 mm) of sands having distinct shapes (rounded, angular) were added to a low-plasticity clay with mixture ratios of 0% (clean clay), 10%, 20%, 30%, 40%, and 50%. For the purposes of performing a correlation analysis, unconfined compression (UC) tests were also carried out on the same specimens. The tests indicated that both the Gmax and unconfined compressive strength (qu) values of the specimens with angular sand grains were measured to be lower than those with rounded sand grains, for all sizes and percentages. As the percentage of sand in the mixture increases, the Gmax values increase, while the qu values decrease. The results further suggested that the Gmax values decrease as the qu values decreases as the size of the sand grains reduces.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/actageotechslov.15.1.3-15.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 14

Abstract

Bender-element (BE) tests were conducted on clay-sand mixtures to investigate the variation of small strain-shear modulus (Gmax) with the sand content and the physical characteristics (size, shape) of the sand grains in the mixtures. Three different gradations (0.6–0.3 mm, 1.0–0.6 mm and 2.0–1.0 mm) of sands having distinct shapes (rounded, angular) were added to a low-plasticity clay with mixture ratios of 0% (clean clay), 10%, 20%, 30%, 40%, and 50%. For the purposes of performing a correlation analysis, unconfined compression (UC) tests were also carried out on the same specimens. The tests indicated that both the Gmax and unconfined compressive strength (qu) values of the specimens with angular sand grains were measured to be lower than those with rounded sand grains, for all sizes and percentages. As the percentage of sand in the mixture increases, the Gmax values increase, while the qu values decrease. The results further suggested that the Gmax values decrease as the qu values decreases as the size of the sand grains reduces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘土-砂混合料的剪切模组弯曲单元试验
在粘土-砂混合物上进行了Bender单元(BE)试验,以研究小应变剪切模量(Gmax)随砂含量和混合物中砂粒的物理特性(尺寸、形状)的变化。将三种不同级配(0.6–0.3 mm、1.0–0.6 mm和2.0–1.0 mm)具有不同形状(圆形、棱角状)的沙子添加到低塑性粘土中,混合比为0%(干净粘土)、10%、20%、30%、40%和50%。为了进行相关性分析,还对相同的试样进行了无侧限抗压(UC)试验。试验表明,对于所有尺寸和百分比,具有角砂粒的试样的Gmax和无侧限抗压强度(qu)值均低于具有圆形砂粒的试样。随着混合物中沙子百分比的增加,Gmax值增加,而qu值减少。结果进一步表明,随着砂粒尺寸的减小,Gmax值随着qu值的减小而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1