Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2021-01-01 DOI:10.18690/actageotechslov.18.1.28-40.2021
A. C. Taiba, Y. Mahmoudi, W. Baille, T. Wichtmann, M. Belkhatir
{"title":"Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence","authors":"A. C. Taiba, Y. Mahmoudi, W. Baille, T. Wichtmann, M. Belkhatir","doi":"10.18690/actageotechslov.18.1.28-40.2021","DOIUrl":null,"url":null,"abstract":"The threshold silt content is well known as a key parameter affecting the mechanical response of binary granular assemblies considering particle characteristics (size and shape). In this context, the threshold silt content (TSC) is determined from different laboratory tests based on packing density response (emax and emin versus silt content «Sc») and theoretical approaches proposed by several researchers in the specialized published literature using the characteristics of host sand and silt [emax(sand), emin(sand) , emax(silt) , emin(silt) , Gs , Gf and x]. The analysis of the recorded data indicates that the TSC derived from the (emax) curve appears more reliable than that obtained from the (emin) one. Moreover, it is found that the proposed analytical methods are suitable to quantify the threshold silt content (TSC) than that determined experimentally using the packing density (emax and emin). In addition, the test results show that the new introduced ratios [(D50s×As)/(D50f×Af)] and [(Cus×As)/(Cuf×Af)] determined based on particle characteristics (shape and size) appear as appropriate parameters for predicting the threshold silt content (TSC) of sand-silt mixture of the compiled data from the published literature as well as that of the present research related to Chlef sand, Fontainebleau sand and Hostun sand mixed with Chlef silt.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/actageotechslov.18.1.28-40.2021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 6

Abstract

The threshold silt content is well known as a key parameter affecting the mechanical response of binary granular assemblies considering particle characteristics (size and shape). In this context, the threshold silt content (TSC) is determined from different laboratory tests based on packing density response (emax and emin versus silt content «Sc») and theoretical approaches proposed by several researchers in the specialized published literature using the characteristics of host sand and silt [emax(sand), emin(sand) , emax(silt) , emin(silt) , Gs , Gf and x]. The analysis of the recorded data indicates that the TSC derived from the (emax) curve appears more reliable than that obtained from the (emin) one. Moreover, it is found that the proposed analytical methods are suitable to quantify the threshold silt content (TSC) than that determined experimentally using the packing density (emax and emin). In addition, the test results show that the new introduced ratios [(D50s×As)/(D50f×Af)] and [(Cus×As)/(Cuf×Af)] determined based on particle characteristics (shape and size) appear as appropriate parameters for predicting the threshold silt content (TSC) of sand-silt mixture of the compiled data from the published literature as well as that of the present research related to Chlef sand, Fontainebleau sand and Hostun sand mixed with Chlef silt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阈值粉砂含量依赖于颗粒材料的颗粒形态(形状和大小):与新证据的回顾
考虑颗粒特征(大小和形状),阈值粉砂含量是影响二元颗粒组合力学响应的关键参数。在这种情况下,阈值粉砂含量(TSC)是根据不同的实验室测试确定的,这些测试基于堆积密度响应(emax和emin与粉砂含量«Sc»)和几位研究人员在专门发表的文献中提出的理论方法,利用寄主砂和粉砂的特征[emax(砂)、emax(砂)、emax(粉)、emin(粉)、Gs、Gf和x]。对实测数据的分析表明,由(emax)曲线得到的TSC值比由(emin)曲线得到的TSC值更可靠。此外,研究还发现,与利用堆积密度(emax和emin)测定的阈值泥沙含量(TSC)相比,本文提出的分析方法更适合定量阈值泥沙含量(TSC)。此外,试验结果表明,根据颗粒特征(形状和大小)确定的新引入的比值[(D50s×As)/(D50f×Af)]和[(Cus×As)/(Cuf×Af)]是预测已发表文献整理数据以及本研究中Chlef砂、枫丹白卢砂和Hostun砂与Chlef粉混合的阈值粉砂含量(TSC)的合适参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1