Overcoming Market Failures in Pandemic Drug Discovery Through Open Science: A Canadian Solution

E. Gold, A. Edwards
{"title":"Overcoming Market Failures in Pandemic Drug Discovery Through Open Science: A Canadian Solution","authors":"E. Gold, A. Edwards","doi":"10.3389/fddsv.2022.898654","DOIUrl":null,"url":null,"abstract":"Among the lessons learned from the COVID-19 pandemic is the need to develop antiviral drugs poised to treat the next pandemic. Unfortunately, traditional drug development economic models, centered principally on patents, are ineffective to induce private sector investment due to unpredictable timing and cause of the next pandemic. As a result, illustrated by the COVID-19 pandemic, it is the public and philanthropic sectors sectors that overwhelmingly fund the development of innovative vaccines and therapies. To meet the need for proactive antiviral medicines in advance of the next pandemic, new models of drug development are needed. Open science partnerships (OSPs) show promise in this regard. Rather than rely principally on patents and private investment, OSPs combine a variety of academic, philanthropic, governmental, and private sector incentives to share knowledge and develop and test antiviral drugs. Private sector investments are, within an OSP, not only leveraged against investments by other actors, but predicated on gaining regulatory data exclusivity, a known and secure form of commercial advantage. Building on domestic expertise in OSPs, Canadian leaders created the Viral Interruption Medicines Initiative, a not-for-profit OSP, to develop pandemic ready-antivirals and address other areas of market failure.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.898654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Among the lessons learned from the COVID-19 pandemic is the need to develop antiviral drugs poised to treat the next pandemic. Unfortunately, traditional drug development economic models, centered principally on patents, are ineffective to induce private sector investment due to unpredictable timing and cause of the next pandemic. As a result, illustrated by the COVID-19 pandemic, it is the public and philanthropic sectors sectors that overwhelmingly fund the development of innovative vaccines and therapies. To meet the need for proactive antiviral medicines in advance of the next pandemic, new models of drug development are needed. Open science partnerships (OSPs) show promise in this regard. Rather than rely principally on patents and private investment, OSPs combine a variety of academic, philanthropic, governmental, and private sector incentives to share knowledge and develop and test antiviral drugs. Private sector investments are, within an OSP, not only leveraged against investments by other actors, but predicated on gaining regulatory data exclusivity, a known and secure form of commercial advantage. Building on domestic expertise in OSPs, Canadian leaders created the Viral Interruption Medicines Initiative, a not-for-profit OSP, to develop pandemic ready-antivirals and address other areas of market failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过开放科学克服流行病药物发现的市场失灵:加拿大的解决方案
从新冠肺炎大流行中吸取的教训之一是需要开发抗病毒药物来治疗下一次大流行。不幸的是,由于下一次疫情的时间和原因不可预测,主要以专利为中心的传统药物开发经济模式无法吸引私营部门的投资。因此,新冠肺炎大流行表明,公共和慈善部门为创新疫苗和疗法的开发提供了绝大多数资金。为了在下一次大流行之前满足对主动抗病毒药物的需求,需要新的药物开发模式。开放科学伙伴关系在这方面显示出希望。OSP不是主要依赖专利和私人投资,而是将各种学术、慈善、政府和私营部门的激励措施结合起来,分享知识,开发和测试抗病毒药物。在OSP中,私营部门的投资不仅与其他行为者的投资相抗衡,而且以获得监管数据的排他性为前提,这是一种已知且安全的商业优势。在国内OSP专业知识的基础上,加拿大领导人创建了病毒阻断药物倡议,这是一个非营利的OSP,旨在开发应对疫情的抗病毒药物,并解决市场失灵的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mimicking the immunosuppressive impact of fibroblasts in a 3D multicellular spheroid model Alternative therapeutics to control antimicrobial resistance: a general perspective Editorial: The boulder peptide symposium 2021 scientific update Applying artificial intelligence to accelerate and de-risk antibody discovery Editorial: Women in anti-inflammatory and immunomodulating agents: 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1