Generalizable Black-Box Adversarial Attack with Meta Learning

IF 20.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Pattern Analysis and Machine Intelligence Pub Date : 2023-01-01 DOI:10.48550/arXiv.2301.00364
Fei Yin, Yong Zhang, Baoyuan Wu, Yan Feng, Jingyi Zhang, Yanbo Fan, Yujiu Yang
{"title":"Generalizable Black-Box Adversarial Attack with Meta Learning","authors":"Fei Yin, Yong Zhang, Baoyuan Wu, Yan Feng, Jingyi Zhang, Yanbo Fan, Yujiu Yang","doi":"10.48550/arXiv.2301.00364","DOIUrl":null,"url":null,"abstract":"In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments. The source code is available at https://github.com/SCLBD/MCG-Blackbox.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.00364","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments. The source code is available at https://github.com/SCLBD/MCG-Blackbox.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元学习的可推广黑匣子对抗攻击
在黑箱对抗性攻击的场景中,目标模型的参数是未知的,攻击者的目标是在查询预算下基于查询反馈找到成功的对抗性扰动。由于反馈信息有限,现有的基于查询的黑盒攻击方法通常需要许多查询来攻击每个良性示例。为了降低查询成本,我们建议在历史攻击中利用反馈信息,称为示例级对抗性可转移性。具体来说,通过将对每个良性示例的攻击视为一项任务,我们通过训练元生成器来产生以良性示例为条件的扰动,从而开发了一个元学习框架。当攻击一个新的良性示例时,可以根据新任务的反馈信息以及一些历史攻击来快速微调元生成器,以产生有效的扰动。此外,由于元训练过程消耗了许多查询来学习可推广生成器,我们利用模型级的对抗性可转移性在白盒代理模型上训练元生成器,然后将其转移以帮助攻击目标模型。所提出的具有两种类型的对抗性可转移性的框架可以自然地与任何现成的基于查询的攻击方法相结合,以提高其性能,这已经通过大量实验得到了验证。源代码位于https://github.com/SCLBD/MCG-Blackbox.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.40
自引率
3.00%
发文量
885
审稿时长
8.5 months
期刊介绍: The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.
期刊最新文献
Streaming quanta sensors for online, high-performance imaging and vision FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels Partial Scene Text Retrieval BokehMe++: Harmonious Fusion of Classical and Neural Rendering for Versatile Bokeh Creation DiffI2I: Efficient Diffusion Model for Image-to-Image Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1