{"title":"A New direct power control method of the DFIG-DRWT system using neural PI controllers and four-level neural modified SVM technique","authors":"H. Benbouhenni","doi":"10.22201/icat.24486736e.2023.21.1.2171","DOIUrl":null,"url":null,"abstract":"Recently, direct power control (DPC) based proportional-integral (PI) controllers have become dominant for doubly fed induction generators (DFIGs) due to its simplicity and good dynamic response. But this strategy gives a high total harmonic distortion (THD) of the voltage and a large power ripple. In this paper, a new DPC method (called as NDPC-4L-NSVPWM) is proposed based on a four-level neural space vector pulse width modulation (4L-NSVPWM) and neural PI controllers for direct active and reactive powers command (DRAPC) of a DFIG integrated in a dual-rotor wind turbine (DRWT). This control scheme is based on direct reactive and active powers estimation. Theoretical principles of this strategy are presented along with simulation results. The advantages and robustness of NDPC-4L-NSVPWM control over other DPC with PI controllers (DPC-PI) are presented. The main advantages of NDPC-4L-NSVPWM strategy are relative to its good dynamic response, simplicity of the algorithm and operation at a constant switching frequency. Analysis of NDPC-4L-NSVPWM strategy based DFIG-DRWT has been done in MATLAB/Simulink software. Simulation results validate the performance of the NDPC-4L-NSVPWM strategy by evaluating the THD of current and the reduction of the ripples for the active/reactive power of DFIG-DRWTs.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.1.2171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
Recently, direct power control (DPC) based proportional-integral (PI) controllers have become dominant for doubly fed induction generators (DFIGs) due to its simplicity and good dynamic response. But this strategy gives a high total harmonic distortion (THD) of the voltage and a large power ripple. In this paper, a new DPC method (called as NDPC-4L-NSVPWM) is proposed based on a four-level neural space vector pulse width modulation (4L-NSVPWM) and neural PI controllers for direct active and reactive powers command (DRAPC) of a DFIG integrated in a dual-rotor wind turbine (DRWT). This control scheme is based on direct reactive and active powers estimation. Theoretical principles of this strategy are presented along with simulation results. The advantages and robustness of NDPC-4L-NSVPWM control over other DPC with PI controllers (DPC-PI) are presented. The main advantages of NDPC-4L-NSVPWM strategy are relative to its good dynamic response, simplicity of the algorithm and operation at a constant switching frequency. Analysis of NDPC-4L-NSVPWM strategy based DFIG-DRWT has been done in MATLAB/Simulink software. Simulation results validate the performance of the NDPC-4L-NSVPWM strategy by evaluating the THD of current and the reduction of the ripples for the active/reactive power of DFIG-DRWTs.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.