MODEL-BASED EVALUATION OF ENZYMATIC HYDROLYSIS OF MICROALGAL CELLULOSE AND DIFFERENT CELLULOSIC MATERIALS

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-02-28 DOI:10.35812/cellulosechemtechnol.2023.57.10
H. Shokrkar
{"title":"MODEL-BASED EVALUATION OF ENZYMATIC HYDROLYSIS OF MICROALGAL CELLULOSE AND DIFFERENT CELLULOSIC MATERIALS","authors":"H. Shokrkar","doi":"10.35812/cellulosechemtechnol.2023.57.10","DOIUrl":null,"url":null,"abstract":"\"The development of a kinetic model for fermentable sugar production is a significant issue due to the complexity of the enzymatic hydrolysis of cellulose. This study presents a proper mathematical model for the evaluation of enzymatic hydrolysis of microalgal cellulose and different cellulosic materials. The modeling results were compared with experimental results of enzymatic hydrolysis of microalgal cellulose and different cellulosic materials. Also, the results of the proposed modified model and another model from the literature were compared. The comparison indicated that the proposed modified model gives a more accurate prediction of the production of glucose, cellobiose, and cellulose consumption as a function of time, during enzymatic hydrolysis of cellulosic materials. The proposed modified model, with an average of equal to 38.15, is more accurate than the previously reported model, with an average of equal to 48.84.\"","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.10","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

"The development of a kinetic model for fermentable sugar production is a significant issue due to the complexity of the enzymatic hydrolysis of cellulose. This study presents a proper mathematical model for the evaluation of enzymatic hydrolysis of microalgal cellulose and different cellulosic materials. The modeling results were compared with experimental results of enzymatic hydrolysis of microalgal cellulose and different cellulosic materials. Also, the results of the proposed modified model and another model from the literature were compared. The comparison indicated that the proposed modified model gives a more accurate prediction of the production of glucose, cellobiose, and cellulose consumption as a function of time, during enzymatic hydrolysis of cellulosic materials. The proposed modified model, with an average of equal to 38.15, is more accurate than the previously reported model, with an average of equal to 48.84."
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的微藻纤维素和不同纤维素材料酶解性能评价
“由于纤维素酶解的复杂性,开发可发酵糖生产的动力学模型是一个重要问题。本研究为微藻纤维素和不同纤维素材料的酶解评价提供了一个合适的数学模型。将模拟结果与微藻纤维素及不同纤维素材料的酶解实验结果进行了比较。并将修正模型与文献中另一模型的结果进行了比较。比较表明,所提出的修正模型可以更准确地预测纤维素材料酶解过程中葡萄糖、纤维素二糖的产量和纤维素消耗量随时间的变化。所提出的修正模型的平均值为38.15,比先前报道的平均值为48.84的模型更准确。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1