Advancing justice in a city’s complex systems using designs enabled by space

Ingrid Mayrhofer-Hufnagl, Benjamin Ennemoser
{"title":"Advancing justice in a city’s complex systems using designs enabled by space","authors":"Ingrid Mayrhofer-Hufnagl, Benjamin Ennemoser","doi":"10.1177/14780771231168223","DOIUrl":null,"url":null,"abstract":"Understanding the importance of data is crucial for realizing the full potential of AI in architectural design. Satellite images are extremely numerous, continuous, high resolution, and accessible, allowing nuanced experimentation through dataset curation. Combining deep learning with remote-sensing technologies, this study poses the following questions. Do newly available datasets uncover ideas about the city previously hidden because urban theory is predominantly Eurocentric? Do extensive and continuous datasets promise a more refined examination of datasets’ effects on outcomes? Generative adversarial networks can endlessly generate new designs based on a curated dataset, but architectural evaluation has been questionable. We employ quantitative and qualitative assessment metrics to investigate human collaboration with AI, producing results that contribute to understanding AI-based urban design models and the significance of dataset curation. Graphical Abstract","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"21 1","pages":"280 - 296"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231168223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the importance of data is crucial for realizing the full potential of AI in architectural design. Satellite images are extremely numerous, continuous, high resolution, and accessible, allowing nuanced experimentation through dataset curation. Combining deep learning with remote-sensing technologies, this study poses the following questions. Do newly available datasets uncover ideas about the city previously hidden because urban theory is predominantly Eurocentric? Do extensive and continuous datasets promise a more refined examination of datasets’ effects on outcomes? Generative adversarial networks can endlessly generate new designs based on a curated dataset, but architectural evaluation has been questionable. We employ quantitative and qualitative assessment metrics to investigate human collaboration with AI, producing results that contribute to understanding AI-based urban design models and the significance of dataset curation. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间设计促进城市复杂系统中的正义
理解数据的重要性对于实现人工智能在建筑设计中的全部潜力至关重要。卫星图像数量巨大、连续、高分辨率且可访问,允许通过数据集管理进行细致入微的实验。将深度学习与遥感技术相结合,本研究提出了以下问题。新提供的数据集是否揭示了以前因为城市理论主要以欧洲为中心而隐藏的关于城市的想法?广泛和连续的数据集是否承诺对数据集对结果的影响进行更精细的检查?生成对抗性网络可以基于精心策划的数据集无休止地生成新的设计,但架构评估一直值得怀疑。我们采用定量和定性评估指标来调查人类与人工智能的合作,产生的结果有助于理解基于人工智能的城市设计模型和数据集管理的重要性。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
期刊最新文献
Encapsulating creative collaborations: A case study in the design of cement tiles RO-BIK—A robotic approach to developing dynamic architecture A convolutional neural network approach to classifying urban spaces using generative tools for data augmentation Reclaiming site analysis from co-sensing to co-ideation: A collective cartography strategy and tactical trajectories Interpreting a virtual reconstruction from different levels of detail: 3D modeling approaches combined with a phenomenological exploratory study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1