Adaptive behaviors of Drosophila larvae on slippery surfaces

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2023-02-15 DOI:10.1007/s10867-023-09626-2
Li Guo, Yixuan Sun, Sijian Liu
{"title":"Adaptive behaviors of Drosophila larvae on slippery surfaces","authors":"Li Guo,&nbsp;Yixuan Sun,&nbsp;Sijian Liu","doi":"10.1007/s10867-023-09626-2","DOIUrl":null,"url":null,"abstract":"<div><p>Friction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of <i>Drosophila</i> larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in <i>rut</i> mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of <i>Drosophila</i> larvae to low-friction conditions.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-023-09626-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-023-09626-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Friction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of Drosophila larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in rut mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of Drosophila larvae to low-friction conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇幼虫在光滑表面的适应行为
摩擦力无处不在,但却是昆虫运动过程中必不可少的力量。昆虫使用专用的生物机械系统,如粘接垫来调节摩擦强度,为运动提供稳定的抓地力。然而,如何揭示摩擦调节的行为适应和调节神经回路仍有很大的了解。在本研究中,我们设计了一种新的行为范式来研究果蝇幼虫在低摩擦表面下的适应性行为变化。我们发现尾巴松动表型类似于人类的滑动行为,作为评估滑动程度的主要指标。我们发现,野生型幼虫在连续爬行后,滑动水平逐渐降低,同时尾部收缩、位移和速度加速增加。同时,我们还发现尾翼松动指数与尾翼收缩长度之间存在较强的相关性,表明尾翼收缩长度的延长可能有助于扩大尾翼与管材的接触面积。此外,我们还发现了车辙突变体幼虫的延迟适应,推测神经可塑性可能参与了滑动适应。综上所述,我们的模式可以简单可靠地复制,为揭示果蝇幼虫适应低摩擦条件的行为原理和神经机制提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1