An improved 3D quantitative structure-activity relationships (QSAR) of molecules with CNN-based partial least squares model

Xuxiang Huo , Jun Xu , Mingyuan Xu , Hongming Chen
{"title":"An improved 3D quantitative structure-activity relationships (QSAR) of molecules with CNN-based partial least squares model","authors":"Xuxiang Huo ,&nbsp;Jun Xu ,&nbsp;Mingyuan Xu ,&nbsp;Hongming Chen","doi":"10.1016/j.ailsci.2023.100065","DOIUrl":null,"url":null,"abstract":"<div><p>Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318523000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN的偏最小二乘模型改进分子三维定量构效关系
基于配体的虚拟筛选在蛋白质结构不可用的情况下起着重要作用。在基于配体的方法中,准确、快速地预测蛋白质与配体的结合亲和力对于降低计算成本和有效地探索化学搜索空间至关重要。在这里,我们提出了一种基于cnn的方法,称为L3D-PLS,用于在没有目标结构的情况下建立定量的构效关系。在L3D-PLS中,设计了一个CNN模块,用于从对齐配体周围的网格中提取关键的相互作用特征,并使用偏最小二乘(PLS)模型将其与预训练CNN模块提取的特征进行拟合。在30个公开的预对齐分子数据集中,L3D-PLS优于传统的CoMFA方法。这一结果突出表明,L3D-PLS可以用于基于小数据集的先导物优化,这在药物发现过程中通常是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Pharmacological profiles of neglected tropical disease drugs DTA Atlas: A massive-scale drug repurposing database Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1