Xuxiang Huo , Jun Xu , Mingyuan Xu , Hongming Chen
{"title":"An improved 3D quantitative structure-activity relationships (QSAR) of molecules with CNN-based partial least squares model","authors":"Xuxiang Huo , Jun Xu , Mingyuan Xu , Hongming Chen","doi":"10.1016/j.ailsci.2023.100065","DOIUrl":null,"url":null,"abstract":"<div><p>Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318523000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)