Structural, electronic and thermoelectric properties of LiAlX2 (X=S and Se) chalcopyrites: promising for thermoelectric power generators

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Chalcogenide Letters Pub Date : 2023-01-01 DOI:10.15251/cl.2023.201.73
J. Kumari, C. Singh, R. Agrawal, B. L. Choudhary, A. Verma
{"title":"Structural, electronic and thermoelectric properties of LiAlX2 (X=S and Se) chalcopyrites: promising for thermoelectric power generators","authors":"J. Kumari, C. Singh, R. Agrawal, B. L. Choudhary, A. Verma","doi":"10.15251/cl.2023.201.73","DOIUrl":null,"url":null,"abstract":"Herein, we have inquired the structural, electronic and thermoelectric properties of the couple of chalcopyrite structured solids LiAlX2 (X=S and Se) with the help of density functional theory (DFT), which is tracked by resolution of the Boltzmann transport equation with the constant relaxation time calculations. The LDA (Localized Density Approximation), PBE (Perdew-Burke-Ernzerhof), PBEsol (PBE functional revised for solids) and WC (Wu-Cohen) exchange correlation potentials have been used. The calculated lattice constants a = 5.271 Å; c = 10.178 Å and a = 6.226 Å; c = 12.165 Å for LiAlS2 and LiAlSe2 respectively and the band gap of the mentioned compounds are found in range from 1.74 eV to 3.13 eV. The dependency of thermoelectric parameters are calculated with different temperature (300-800K) and carrier concentration 1018 1019 cm-3 . From the study of ZT (figure of merit’s ZT= S2 σT/κ the dimensionless parameter) and it is found that it’s value for both the compounds in n-type as well as in p-type region is ‘unity’. Since these compounds can be the promising candidate for thermoelectric devices also these compounds are non-toxic, eco-friendly and good alternative for the green and renewable source of electric power generators.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.201.73","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we have inquired the structural, electronic and thermoelectric properties of the couple of chalcopyrite structured solids LiAlX2 (X=S and Se) with the help of density functional theory (DFT), which is tracked by resolution of the Boltzmann transport equation with the constant relaxation time calculations. The LDA (Localized Density Approximation), PBE (Perdew-Burke-Ernzerhof), PBEsol (PBE functional revised for solids) and WC (Wu-Cohen) exchange correlation potentials have been used. The calculated lattice constants a = 5.271 Å; c = 10.178 Å and a = 6.226 Å; c = 12.165 Å for LiAlS2 and LiAlSe2 respectively and the band gap of the mentioned compounds are found in range from 1.74 eV to 3.13 eV. The dependency of thermoelectric parameters are calculated with different temperature (300-800K) and carrier concentration 1018 1019 cm-3 . From the study of ZT (figure of merit’s ZT= S2 σT/κ the dimensionless parameter) and it is found that it’s value for both the compounds in n-type as well as in p-type region is ‘unity’. Since these compounds can be the promising candidate for thermoelectric devices also these compounds are non-toxic, eco-friendly and good alternative for the green and renewable source of electric power generators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LiAlX2(X=S和Se)硫黄铁矿的结构、电子和热电性能:有望用于热电发电机
在此,我们借助密度泛函理论(DFT)研究了黄铜矿结构固体LiAlX2(X=S和Se)对的结构、电子和热电性质,该理论通过求解Boltzmann输运方程和常数弛豫时间计算来跟踪。使用了LDA(局部化密度近似)、PBE(Perdew-Burke-Ernzerhof)、PBEsol(固体PBE函数修正)和WC(Wu-Cohen)交换相关势。计算的晶格常数a=5.271Å;c=10.178Å和a=6.226Å;对于LiAlS2和LiAlSe2,c分别为12.165Å,并且发现上述化合物的带隙在1.74 eV到3.13 eV之间。计算了不同温度(300-800K)和载流子浓度1018 1019 cm-3下热电参数的依赖性。通过对ZT(品质因数ZT=S2σT/κ无量纲参数)的研究,发现n型和p型区域的化合物的ZT值都是“统一的”。由于这些化合物可能是热电装置的有前途的候选者,这些化合物也是无毒、环保的,是绿色和可再生能源发电机的良好替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
期刊最新文献
Thermal conductivity and lattice dynamics of thermoelectric oxychalcogenide BiCuTeO Retraction notice: Optimization of chemical bath deposited CdSSe thin films Enhancement efficiency of cadmium selenium solar cell by doping within silver Steady-state and transient photocurrents of As-S-Sb-Te amorphous thin films Nucleation and growth study of SnS nanostructures prepared by electrodeposition method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1