Navigation Situation Assessment of Autonomous Surface Vehicles in a Cooperative Hunting Environment

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2022-06-01 DOI:10.2478/pomr-2022-0013
Wenjun Zhang, Fuqiang Wang, Qiqiang Gao, Xingru Qu
{"title":"Navigation Situation Assessment of Autonomous Surface Vehicles in a Cooperative Hunting Environment","authors":"Wenjun Zhang, Fuqiang Wang, Qiqiang Gao, Xingru Qu","doi":"10.2478/pomr-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a navigation situation assessment method for autonomous surface vehicles (ASVs) in a cooperative hunting environment. By virtue of the repulsion function expressed in the artificial potential field, the navigation situation of hunting ASVs and target ASVs is firstly described. And the hunting situation is also constructed to describe the cooperative hunting. Based on the navigation situation and the hunting situation, a navigation situation assessment method for cooperative hunting of multiple ASVs is designed, where the number of hunting vehicles and the hunting radius can be successfully computed. Simulation results show that this proposed situation assessment method can give an optimised formation pattern and provide an effective reference for cooperative hunting of ASVs.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"19 - 26"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper proposes a navigation situation assessment method for autonomous surface vehicles (ASVs) in a cooperative hunting environment. By virtue of the repulsion function expressed in the artificial potential field, the navigation situation of hunting ASVs and target ASVs is firstly described. And the hunting situation is also constructed to describe the cooperative hunting. Based on the navigation situation and the hunting situation, a navigation situation assessment method for cooperative hunting of multiple ASVs is designed, where the number of hunting vehicles and the hunting radius can be successfully computed. Simulation results show that this proposed situation assessment method can give an optimised formation pattern and provide an effective reference for cooperative hunting of ASVs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同狩猎环境下自主水面车辆的航行态势评估
摘要本文提出了一种自主水面车辆在协同狩猎环境中的导航态势评估方法。利用人工势场中表示的排斥函数,首次描述了狩猎ASV和目标ASV的导航情况。并构建了狩猎情境来描述合作狩猎。基于航行状况和狩猎状况,设计了一种多ASV协同狩猎的航行状况评估方法,该方法可以成功地计算狩猎车辆的数量和狩猎半径。仿真结果表明,该态势评估方法能够给出最优的编队形态,为ASV的协同狩猎提供了有效的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1