Analysis of black hole solutions in parabolic class using neural networks

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2023-07-15 DOI:10.1140/epjc/s10052-023-11781-8
Ehsan Hatefi, Armin Hatefi, Roberto J. López-Sastre
{"title":"Analysis of black hole solutions in parabolic class using neural networks","authors":"Ehsan Hatefi,&nbsp;Armin Hatefi,&nbsp;Roberto J. López-Sastre","doi":"10.1140/epjc/s10052-023-11781-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a numerical method based on Artificial Neural Networks (ANNs) for the analysis of black hole solutions to the Einstein-axion-dilaton system in a high dimensional parabolic class. Leveraging a profile root-finding technique based on General Relativity we describe an ANN solver to directly tackle the system of ordinary differential equations. Through our extensive numerical analysis, we demonstrate, for the first time, that there is no self-similar critical solution for the parabolic class in the high dimensions of space-time. Specifically, we develop 95% ANN-based confidence intervals for all the solutions in their domains. At the 95% confidence level, our ANN estimators confirm that there is no black hole solution in higher dimensions, hence the gravitational collapse does not occur. Results provide some doubts about the universality of the Choptuik phenomena. Therefore, we conclude that the fastest-growing mode of the perturbations that determine the critical exponent does not exist for the parabolic class in the high dimensions.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11781-8.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11781-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce a numerical method based on Artificial Neural Networks (ANNs) for the analysis of black hole solutions to the Einstein-axion-dilaton system in a high dimensional parabolic class. Leveraging a profile root-finding technique based on General Relativity we describe an ANN solver to directly tackle the system of ordinary differential equations. Through our extensive numerical analysis, we demonstrate, for the first time, that there is no self-similar critical solution for the parabolic class in the high dimensions of space-time. Specifically, we develop 95% ANN-based confidence intervals for all the solutions in their domains. At the 95% confidence level, our ANN estimators confirm that there is no black hole solution in higher dimensions, hence the gravitational collapse does not occur. Results provide some doubts about the universality of the Choptuik phenomena. Therefore, we conclude that the fastest-growing mode of the perturbations that determine the critical exponent does not exist for the parabolic class in the high dimensions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经网络分析抛物类黑洞解
本文介绍了一种基于人工神经网络(ann)的高维抛物类爱因斯坦-轴-膨胀系统黑洞解分析的数值方法。利用基于广义相对论的剖面寻根技术,我们描述了一个人工神经网络求解器来直接处理常微分方程系统。通过广泛的数值分析,我们首次证明了在高维时空中抛物线类不存在自相似临界解。具体来说,我们为其领域的所有解决方案开发了95%基于人工神经网络的置信区间。在95%的置信水平上,我们的人工神经网络估计器确认在更高的维度上不存在黑洞解,因此引力坍缩不会发生。结果对Choptuik现象的普遍性提出了一些质疑。因此,我们得出结论,决定高维抛物类临界指数的扰动的增长最快模式不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
Exploring thermodynamics inconsistencies in unimodular gravity: a comparative study of two energy diffusion functions Time-Like heavy-flavour thresholds for fragmentation functions: the light-quark matching condition at NNLO Top quark decays in the flavor-dependent \(U(1)_X\) model The Monument experiment: ordinary muon capture studies for \(0\nu \beta \beta \) decay Black bounces in Cotton gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1