{"title":"Rice yield prediction model using normalized vegetation and water indices from Sentinel-2A satellite imagery datasets","authors":"Aung Myint Htun, Md. Shamsuzzoha, Tofael Ahamed","doi":"10.1007/s41685-023-00299-2","DOIUrl":null,"url":null,"abstract":"<div><p>Yield predictions prior to harvesting crops is significant for agricultural decision-making. This study aimed to predict rice yield at the stage prior to harvesting using crops and soil phenological properties in the Pathein District of Myanmar. Remote sensing imagery data derived from Sentinel-2A satellite imageries during the month of November at the stage prior to harvest of rice fields were collected and analyzed from 2016 to 2021. Four vegetation indices (VIs): (i) normalized difference vegetation index (NDVI), (ii) normalized difference water index (NDWI), (iii) soil-adjusted vegetation index (SAVI), and (iv) rice growth vegetation index (RGVI) were specified as independent variables for a rice yield prediction model, after which simple and multiple linear regression models were estimated and validated. The accuracy of the estimated models was assessed using observed data from 1790 ground reference points (GRPs) in rice-yielding croplands. The average observed rice yield over 6 years was 1.57 tons per acre, and the average rice yield predictions over 6 years were 1.28, 1.48, 1.28, and 1.17 per acre with simple linear regression models from NDVI, NDWI, SAVI and RGVI, respectively. On the other hand, THE observed rice yield was 1.49 tons per acre with a multiple regression model. This indicates that prediction by the multiple regression model with four vegetation indices is superior to predictions by all other linear regression models. The early predicted yield data is useful for rice-growing farmers to compare expenses against losses after any extreme climatic event.</p></div>","PeriodicalId":36164,"journal":{"name":"Asia-Pacific Journal of Regional Science","volume":"7 2","pages":"491 - 519"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Regional Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41685-023-00299-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Yield predictions prior to harvesting crops is significant for agricultural decision-making. This study aimed to predict rice yield at the stage prior to harvesting using crops and soil phenological properties in the Pathein District of Myanmar. Remote sensing imagery data derived from Sentinel-2A satellite imageries during the month of November at the stage prior to harvest of rice fields were collected and analyzed from 2016 to 2021. Four vegetation indices (VIs): (i) normalized difference vegetation index (NDVI), (ii) normalized difference water index (NDWI), (iii) soil-adjusted vegetation index (SAVI), and (iv) rice growth vegetation index (RGVI) were specified as independent variables for a rice yield prediction model, after which simple and multiple linear regression models were estimated and validated. The accuracy of the estimated models was assessed using observed data from 1790 ground reference points (GRPs) in rice-yielding croplands. The average observed rice yield over 6 years was 1.57 tons per acre, and the average rice yield predictions over 6 years were 1.28, 1.48, 1.28, and 1.17 per acre with simple linear regression models from NDVI, NDWI, SAVI and RGVI, respectively. On the other hand, THE observed rice yield was 1.49 tons per acre with a multiple regression model. This indicates that prediction by the multiple regression model with four vegetation indices is superior to predictions by all other linear regression models. The early predicted yield data is useful for rice-growing farmers to compare expenses against losses after any extreme climatic event.
IF 0.8 4区 农林科学Ciencia RuralPub Date : 2022-01-01DOI: 10.1590/0103-8478cr20210310
Paloma Helena Sanches da Silva, Mariana Zanini Maia, Danyelle Rayssa Cintra Ferreira, Bruno Canedo Simões de Lima, Amanda Oliveira Paraguassú, M. R. Luz, S. L. Beier, P. M. Freitas
期刊介绍:
The Asia-Pacific Journal of Regional Science expands the frontiers of regional science through the diffusion of intrinsically developed and advanced modern, regional science methodologies throughout the Asia-Pacific region. Articles published in the journal foster progress and development of regional science through the promotion of comprehensive and interdisciplinary academic studies in relationship to research in regional science across the globe. The journal’s scope includes articles dedicated to theoretical economics, positive economics including econometrics and statistical analysis and input–output analysis, CGE, Simulation, applied economics including international economics, regional economics, industrial organization, analysis of governance and institutional issues, law and economics, migration and labor markets, spatial economics, land economics, urban economics, agricultural economics, environmental economics, behavioral economics and spatial analysis with GIS/RS data education economics, sociology including urban sociology, rural sociology, environmental sociology and educational sociology, as well as traffic engineering. The journal provides a unique platform for its research community to further develop, analyze, and resolve urgent regional and urban issues in Asia, and to further refine established research around the world in this multidisciplinary field. The journal invites original articles, proposals, and book reviews.The Asia-Pacific Journal of Regional Science is a new English-language journal that spun out of Chiikigakukenkyuu, which has a 45-year history of publishing the best Japanese research in regional science in the Japanese language and, more recently and more frequently, in English. The development of regional science as an international discipline has necessitated the need for a new publication in English. The Asia-Pacific Journal of Regional Science is a publishing vehicle for English-language contributions to the field in Japan, across the complete Asia-Pacific arena, and beyond.Content published in this journal is peer reviewed (Double Blind).