Strength of Vegetated Coal-Bearing Soil under Dry-Wet Cycles: An Experimental Study

IF 1.5 Q4 ELECTROCHEMISTRY International Journal of Corrosion Pub Date : 2021-10-21 DOI:10.1155/2021/6657160
Gang Huang, Ming Zheng
{"title":"Strength of Vegetated Coal-Bearing Soil under Dry-Wet Cycles: An Experimental Study","authors":"Gang Huang, Ming Zheng","doi":"10.1155/2021/6657160","DOIUrl":null,"url":null,"abstract":"Strength of vegetated coal-bearing soil is of great significance to evaluate the shallow stability of vegetated slopes in coal-bearing soil regions. This paper takes D-W cycles, dry density, water content, and vegetation root (VR) content as four factors and carries out the triaxial test for the orthogonal design of vegetated coal-bearing soil in southern China. The strength curves of vegetated coal-bearing soil under four factors were obtained. The Taguchi method was used to quantitatively analyse the effects of four factors. The microstructure of coal-bearing soil under D-W cycles and the theory of soil reinforcement by VR were discussed. The results indicated that D-W cycles had a significant effect on the cohesion and internal friction angle (\n \n P\n <\n 0.05\n \n ). The internal friction angle was little affected by the water content and VR content, which had considerable influence on the cohesion. The cohesion could be improved with less than 2% VR content. The cohesion was the largest for no D-W cycles, 10% water content, and 2% VR content. The links between mineral particles go from a stable layered structure to unsteadiness chain structure with the increase in the number of D-W cycles.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6657160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

Abstract

Strength of vegetated coal-bearing soil is of great significance to evaluate the shallow stability of vegetated slopes in coal-bearing soil regions. This paper takes D-W cycles, dry density, water content, and vegetation root (VR) content as four factors and carries out the triaxial test for the orthogonal design of vegetated coal-bearing soil in southern China. The strength curves of vegetated coal-bearing soil under four factors were obtained. The Taguchi method was used to quantitatively analyse the effects of four factors. The microstructure of coal-bearing soil under D-W cycles and the theory of soil reinforcement by VR were discussed. The results indicated that D-W cycles had a significant effect on the cohesion and internal friction angle ( P < 0.05 ). The internal friction angle was little affected by the water content and VR content, which had considerable influence on the cohesion. The cohesion could be improved with less than 2% VR content. The cohesion was the largest for no D-W cycles, 10% water content, and 2% VR content. The links between mineral particles go from a stable layered structure to unsteadiness chain structure with the increase in the number of D-W cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干湿循环作用下植被煤系土强度试验研究
含煤植被土强度对评价含煤植被边坡浅层稳定性具有重要意义。本文以D-W循环、干密度、含水量和植被根含量为四个因素,对华南地区植被含煤土的正交设计进行了三轴试验。得到了四个因素作用下植被含煤土的强度曲线。采用田口法对四个因素的影响进行了定量分析。讨论了D-W循环下含煤土的微观结构和VR加固理论。结果表明,D-W循环对内聚力和内摩擦角有显著影响(P<0.05)。含水量和VR含量对内摩擦角影响不大,对内聚力有较大影响。当VR含量低于2%时,可以提高内聚力。在无D-W循环、10%含水量和2%VR含量的情况下,内聚力最大。随着D-W循环次数的增加,矿物颗粒之间的连接从稳定的层状结构变为不稳定的链结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
8
审稿时长
14 weeks
期刊最新文献
Empirical Study of the Effect of Nanocoolant Particles on Corrosion Rate of 316 Stainless Steel Walk-Through Corrosion Assessment of Slurry Pipeline Using Machine Learning Corrosion Behaviour of a Cr2O3 Coating on Mild Steel in Synthetic Mine Water The Inhibitory Properties of the Ambroxol Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Medium Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1