{"title":"Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments","authors":"Jason Matthiopoulos","doi":"10.1002/ecm.1545","DOIUrl":null,"url":null,"abstract":"<p>During the past century, the fundamental niche, the complete set of environments that allow an individual, population, or species to persist, has shaped ecological thinking. It is a crucial concept connecting population dynamics, spatial ecology, and evolutionary theory, and a prerequisite for predictive ecological models at a time of rapid environmental change. Yet, its properties have eluded quantification, particularly for mobile, cognitively complex organisms. These difficulties are mainly a result of the separation between niche theory and field data, and the dichotomy between environmental and geographical spaces. Here, I combine recent mathematical and statistical results linking habitats to population growth, to achieve a quantitative and intuitive understanding of the fundamental niches of animals. I trace the development of niche ideas from the early steps of ecology to their use in modern statistical and conservation practice. I examine how animal mobility and behavior may blur the division between geographical and environmental space. I discuss how the central models of population and spatial ecology lead to a concise mathematical equation for the fundamental niche of animals and demonstrate how fitness parameters can be understood and directly estimated by fitting this model simultaneously to data on population growth and spatial distributions. I first illustrate these concepts theoretically for territorial species. I then fit the fundamental niche model to a data set of house sparrow colonies to quantify how a species of selective animals can increase their fitness in heterogeneous environments. This work confirms ideas that had been anticipated in the historical niche literature. Specifically, within traditionally defined environmental spaces, habitat heterogeneity and behavioral plasticity make the fundamental niche more complex and malleable than was historically envisaged. However, once examined in higher-dimensional environmental spaces, accounting for spatial heterogeneity, the niche is more predictable than recently suspected. This re-evaluation quantifies how organisms might buffer themselves from change by bending the boundaries of viable environmental space and offers a framework for designing optimal habitat interventions to protect biodiversity or obstruct invasive species. It therefore promotes the fundamental niche as a key concept for understanding animal responses to changing environments and a central tool for environmental management.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1545","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1545","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
During the past century, the fundamental niche, the complete set of environments that allow an individual, population, or species to persist, has shaped ecological thinking. It is a crucial concept connecting population dynamics, spatial ecology, and evolutionary theory, and a prerequisite for predictive ecological models at a time of rapid environmental change. Yet, its properties have eluded quantification, particularly for mobile, cognitively complex organisms. These difficulties are mainly a result of the separation between niche theory and field data, and the dichotomy between environmental and geographical spaces. Here, I combine recent mathematical and statistical results linking habitats to population growth, to achieve a quantitative and intuitive understanding of the fundamental niches of animals. I trace the development of niche ideas from the early steps of ecology to their use in modern statistical and conservation practice. I examine how animal mobility and behavior may blur the division between geographical and environmental space. I discuss how the central models of population and spatial ecology lead to a concise mathematical equation for the fundamental niche of animals and demonstrate how fitness parameters can be understood and directly estimated by fitting this model simultaneously to data on population growth and spatial distributions. I first illustrate these concepts theoretically for territorial species. I then fit the fundamental niche model to a data set of house sparrow colonies to quantify how a species of selective animals can increase their fitness in heterogeneous environments. This work confirms ideas that had been anticipated in the historical niche literature. Specifically, within traditionally defined environmental spaces, habitat heterogeneity and behavioral plasticity make the fundamental niche more complex and malleable than was historically envisaged. However, once examined in higher-dimensional environmental spaces, accounting for spatial heterogeneity, the niche is more predictable than recently suspected. This re-evaluation quantifies how organisms might buffer themselves from change by bending the boundaries of viable environmental space and offers a framework for designing optimal habitat interventions to protect biodiversity or obstruct invasive species. It therefore promotes the fundamental niche as a key concept for understanding animal responses to changing environments and a central tool for environmental management.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.