A new approach to determining heating parameters suitable for hull plate forming by torch line heating

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-12-31 DOI:10.3329/jname.v18i2.51412
T. G. Tran, V. T. Doan
{"title":"A new approach to determining heating parameters suitable for hull plate forming by torch line heating","authors":"T. G. Tran, V. T. Doan","doi":"10.3329/jname.v18i2.51412","DOIUrl":null,"url":null,"abstract":"In shipbuilding, the process of forming flat metal plate into curved hull plates with compound shapes is very important and has greatly affected many economic and technical factors such as strength, quality, and aesthetics of the hull, construction cost and time, etc. Currently, the forming method of curved hull plates by line heating is used effectively and commonly in many shipyards, however, its main problem is very difficult to determine where and how much to heat on the flat metal plate to obtain the plate of a certain shape. In this article, a finite element model is established and adjusted based on the actual data to numerical simulate the process of forming hull plates by using flame torch line heating. Base on this, the suitable position and temperature for the heating lines in the forming process are determined to form a metal plate into hull plates with the exact desired shapes. This research has been applied for forming by torch line heating of two plates, denoted K1 and K10, in the bulb bow of a 20,000 DWT cargo ship, built at Camranh Shipyard in Vietnam with the deformation deviations between the actual and desired plate surfaces are within ± 3%.   ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.51412","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In shipbuilding, the process of forming flat metal plate into curved hull plates with compound shapes is very important and has greatly affected many economic and technical factors such as strength, quality, and aesthetics of the hull, construction cost and time, etc. Currently, the forming method of curved hull plates by line heating is used effectively and commonly in many shipyards, however, its main problem is very difficult to determine where and how much to heat on the flat metal plate to obtain the plate of a certain shape. In this article, a finite element model is established and adjusted based on the actual data to numerical simulate the process of forming hull plates by using flame torch line heating. Base on this, the suitable position and temperature for the heating lines in the forming process are determined to form a metal plate into hull plates with the exact desired shapes. This research has been applied for forming by torch line heating of two plates, denoted K1 and K10, in the bulb bow of a 20,000 DWT cargo ship, built at Camranh Shipyard in Vietnam with the deformation deviations between the actual and desired plate surfaces are within ± 3%.   
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种确定适用于船体板火焰线加热成形的加热参数的新方法
在船舶制造中,将平面金属板成形成具有复合形状的弯曲船体板的过程是非常重要的,它对船体的强度、质量和美观性、建造成本和时间等许多经济技术因素都有很大的影响。目前,在许多造船厂中,曲线船体板的线加热成形方法是一种有效而普遍的成型方法,但其主要问题是很难确定在平坦的金属板上加热的位置和程度,以获得一定形状的板。本文根据实际数据,建立并调整了有限元模型,对火焰火炬线加热成形船体板的过程进行了数值模拟。在此基础上,确定了成形过程中加热线的合适位置和温度,从而将金属板成形为具有所需形状的船体板。本研究已应用于在越南Camranh船厂建造的2万DWT货船球泡船首的两个板(K1和K10)的火炬线加热成型,实际与期望板表面的变形偏差在±3%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation. Heterogeneity of provider preferences for HIV Care Coordination Program features: latent class analysis of a discrete choice experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1