Unsupervised machine learning applied to scanning precession electron diffraction data

Ben H. Martineau, Duncan N. Johnstone, Antonius T. J. van Helvoort, Paul A. Midgley, Alexander S. Eggeman
{"title":"Unsupervised machine learning applied to scanning precession electron diffraction data","authors":"Ben H. Martineau,&nbsp;Duncan N. Johnstone,&nbsp;Antonius T. J. van Helvoort,&nbsp;Paul A. Midgley,&nbsp;Alexander S. Eggeman","doi":"10.1186/s40679-019-0063-3","DOIUrl":null,"url":null,"abstract":"<p>Scanning precession electron diffraction involves the acquisition of a two-dimensional precession electron diffraction pattern at every probe position in a two-dimensional scan. The data typically comprise many more diffraction patterns than the number of distinct microstructural volume elements (e.g. crystals) in the region sampled. A dimensionality reduction, ideally to one representative diffraction pattern per distinct element, may then be sought. Further, some diffraction patterns will contain contributions from multiple crystals sampled along the beam path, which may be unmixed by harnessing this oversampling. Here, we report on the application of unsupervised machine learning methods to achieve both dimensionality reduction and signal unmixing. Potential artefacts are discussed and precession electron diffraction is demonstrated to improve results by reducing the impact of bending and dynamical diffraction so that the data better approximate the case in which each crystal yields a given diffraction pattern.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"5 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-019-0063-3","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-019-0063-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 32

Abstract

Scanning precession electron diffraction involves the acquisition of a two-dimensional precession electron diffraction pattern at every probe position in a two-dimensional scan. The data typically comprise many more diffraction patterns than the number of distinct microstructural volume elements (e.g. crystals) in the region sampled. A dimensionality reduction, ideally to one representative diffraction pattern per distinct element, may then be sought. Further, some diffraction patterns will contain contributions from multiple crystals sampled along the beam path, which may be unmixed by harnessing this oversampling. Here, we report on the application of unsupervised machine learning methods to achieve both dimensionality reduction and signal unmixing. Potential artefacts are discussed and precession electron diffraction is demonstrated to improve results by reducing the impact of bending and dynamical diffraction so that the data better approximate the case in which each crystal yields a given diffraction pattern.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督机器学习在扫描进动电子衍射数据中的应用
扫描进动电子衍射涉及在二维扫描的每个探针位置获取二维进动电子衍射图。数据通常包含比采样区域中不同微观结构体积元素(例如晶体)的数量更多的衍射图案。然后可以寻求一种降维方法,理想情况下,每个不同的元素只有一种具有代表性的衍射图样。此外,一些衍射模式将包含沿光束路径采样的多个晶体的贡献,这些晶体可以通过利用这种过采样来消除混合。在这里,我们报告了无监督机器学习方法的应用,以实现降维和信号解混。讨论了潜在的伪影,并证明了进动电子衍射可以通过减少弯曲和动态衍射的影响来改善结果,从而使数据更好地接近每个晶体产生给定衍射图样的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
期刊最新文献
Detection of defects in atomic-resolution images of materials using cycle analysis Imaging of polymer:fullerene bulk-heterojunctions in a scanning electron microscope: methodology aspects and nanomorphology by correlative SEM and STEM mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations Optimal principal component analysis of STEM XEDS spectrum images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1