Stroke-induced changes to immune function and their relevance to increased risk of severe COVID-19 disease.

Discovery immunology Pub Date : 2022-08-11 eCollection Date: 2022-01-01 DOI:10.1093/discim/kyac004
Laura McCulloch, Isobel C Mouat, Kieron South, Barry W McColl, Stuart M Allan, Craig J Smith
{"title":"Stroke-induced changes to immune function and their relevance to increased risk of severe COVID-19 disease.","authors":"Laura McCulloch, Isobel C Mouat, Kieron South, Barry W McColl, Stuart M Allan, Craig J Smith","doi":"10.1093/discim/kyac004","DOIUrl":null,"url":null,"abstract":"<p><p>As the COVID-19 pandemic moves towards endemic disease, it remains of key importance to identify groups of individuals vulnerable to severe infection and understand the biological factors that mediate this risk. Stroke patients are at increased risk of developing severe COVID-19, likely due to stroke-induced alterations to systemic immune function. Furthermore, immune responses associated with severe COVID-19 in patients without a history of stroke parallel many of the immune alterations induced by stroke, possibly resulting in a compounding effect that contributes to worsened disease severity. In this review, we discuss the changes to systemic immune function that likely contribute to augmented COVID-19 severity in patients with a history of stroke and the effects of COVID-19 on the immune system that may exacerbate these effects.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyac004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the COVID-19 pandemic moves towards endemic disease, it remains of key importance to identify groups of individuals vulnerable to severe infection and understand the biological factors that mediate this risk. Stroke patients are at increased risk of developing severe COVID-19, likely due to stroke-induced alterations to systemic immune function. Furthermore, immune responses associated with severe COVID-19 in patients without a history of stroke parallel many of the immune alterations induced by stroke, possibly resulting in a compounding effect that contributes to worsened disease severity. In this review, we discuss the changes to systemic immune function that likely contribute to augmented COVID-19 severity in patients with a history of stroke and the effects of COVID-19 on the immune system that may exacerbate these effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中风引起的免疫功能变化及其与严重新冠肺炎疾病风险增加的相关性
随着COVID-19大流行向地方病发展,确定易受严重感染的个体群体并了解介导这种风险的生物因素仍然至关重要。中风患者患严重COVID-19的风险增加,可能是由于中风引起的全身免疫功能改变。此外,在没有中风史的患者中,与严重COVID-19相关的免疫反应与中风引起的许多免疫改变相似,可能导致复合效应,导致疾病严重程度恶化。在这篇综述中,我们讨论了系统性免疫功能的变化可能导致卒中史患者COVID-19严重程度增加,以及COVID-19对免疫系统的影响可能加剧这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells Correction to: Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. Assessing immune phenotypes using simple proxy measures: promise and limitations. Extracellular vesicles: an emerging tool for wild immunology. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1