{"title":"Investigation of the tip injection for stall control in a transonic compressor with inlet distortion","authors":"Wenqiang Zhang, M. Vahdati","doi":"10.33737/gpps20-tc-22","DOIUrl":null,"url":null,"abstract":"Experimental studies have shown that tip injection upstream of the rotor can extend its operational range when subjected to circumferential inlet distortion. Typically, injectors are placed uniformly around the annulus. However, such arrangement consumes a large amount of high-pressure air and decreases the overall efficiency of the compression system. The aim of this paper is to minimise the amount of the injected air by determining the most effective circumferential location for the injector.\nIn this study, NASA stage 35 was used as the test case. The experiment was conducted with a circumferential total pressure distortion of 120 degrees. In the first part of this paper, numerical simulations were compared against the experimental data and good match was obtained. In the second part, tip injection at three different positions were tested: the clean flow region (Position 1), the distorted region (Position 2) and the border between the clean and distorted regions (Position 3). It was found that a mild injection (0.66% of the main flow) at Position 2 and Position 3 can extend the stall margin by 1.8% and 2.7%, respectively. No obvious improvement was observed for the injection at Position 1. With a larger injection of 1.5% of main flow at Position 3, the stall margin improved further with no efficiency loss.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Experimental studies have shown that tip injection upstream of the rotor can extend its operational range when subjected to circumferential inlet distortion. Typically, injectors are placed uniformly around the annulus. However, such arrangement consumes a large amount of high-pressure air and decreases the overall efficiency of the compression system. The aim of this paper is to minimise the amount of the injected air by determining the most effective circumferential location for the injector.
In this study, NASA stage 35 was used as the test case. The experiment was conducted with a circumferential total pressure distortion of 120 degrees. In the first part of this paper, numerical simulations were compared against the experimental data and good match was obtained. In the second part, tip injection at three different positions were tested: the clean flow region (Position 1), the distorted region (Position 2) and the border between the clean and distorted regions (Position 3). It was found that a mild injection (0.66% of the main flow) at Position 2 and Position 3 can extend the stall margin by 1.8% and 2.7%, respectively. No obvious improvement was observed for the injection at Position 1. With a larger injection of 1.5% of main flow at Position 3, the stall margin improved further with no efficiency loss.