Simultaneously enhanced thermal conductivity and mechanical performance of carbon nanotube reinforced ZK61 matrix composite

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-07-01 DOI:10.1016/j.jma.2023.01.011
{"title":"Simultaneously enhanced thermal conductivity and mechanical performance of carbon nanotube reinforced ZK61 matrix composite","authors":"","doi":"10.1016/j.jma.2023.01.011","DOIUrl":null,"url":null,"abstract":"<div><p>Alloying seriously deteriorates the thermal conductivity of magnesium (Mg) alloys, thus, restricts their applications in the fields of computer, communication, and consumer products. In order to improve the thermal conductivity of Mg alloys, adding carbon nanotube (CNT) combined with aging treatment is proposed in this work, i.e. fabricating the D-CNT (a kind of dispersed CNT) reinforced ZK61 matrix composite via powder metallurgy, and conducting aging treatment to the composite. Results indicate the as-aged ZK61/0.6 wt.% D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK), exhibiting 52.3% enhancement in comparison with matrix, as well as tensile yield strength of 321 MPa, ultimate tensile strength of 354 of MPa, and elongation of 14%. The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to: (1) the embedded interface of the D-CNT with matrix and (2) the coherent interface of precipitates with matrix. It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances, and enlarge the current restricted applications of Mg alloys.</p></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213956723000385/pdfft?md5=ee8eec476b728fceedba9718662f1651&pid=1-s2.0-S2213956723000385-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956723000385","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Alloying seriously deteriorates the thermal conductivity of magnesium (Mg) alloys, thus, restricts their applications in the fields of computer, communication, and consumer products. In order to improve the thermal conductivity of Mg alloys, adding carbon nanotube (CNT) combined with aging treatment is proposed in this work, i.e. fabricating the D-CNT (a kind of dispersed CNT) reinforced ZK61 matrix composite via powder metallurgy, and conducting aging treatment to the composite. Results indicate the as-aged ZK61/0.6 wt.% D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK), exhibiting 52.3% enhancement in comparison with matrix, as well as tensile yield strength of 321 MPa, ultimate tensile strength of 354 of MPa, and elongation of 14%. The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to: (1) the embedded interface of the D-CNT with matrix and (2) the coherent interface of precipitates with matrix. It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances, and enlarge the current restricted applications of Mg alloys.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时提高了碳纳米管增强ZK61基复合材料的导热性和力学性能
合金化会严重降低镁(Mg)合金的导热性,从而限制其在计算机、通信和消费品领域的应用。为了提高镁合金的导热性,本研究提出了添加碳纳米管(CNT)并结合时效处理的方法,即通过粉末冶金法制备 D-CNT (一种分散的 CNT)增强 ZK61 基复合材料,并对复合材料进行时效处理。结果表明,老化后的 ZK61/0.6 wt.% D-CNT 复合材料的热导率达到了 166 W/(mK),比基体提高了 52.3%,拉伸屈服强度达到 321 MPa,极限拉伸强度为 354 MPa,伸长率为 14%。导热性和机械性能的同时提高主要归功于(1) D-CNT 与基体的嵌入界面;(2) 沉淀物与基体的相干界面。预计目前的研究工作能为设计具有综合结构和功能性能的镁基复合材料提供线索,并扩大目前镁合金的有限应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Research advances of magnesium and magnesium alloys globally in 2023 Orchestrated degradation behavior of Mg mesh for calvarial bone defect reconstruction Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries: Review on the alloying phase and reaction mechanisms Ti3C2Tx MXene-functionalized Hydroxyapatite/Halloysite nanotube filled poly– (lactic acid) coatings on magnesium: In vitro and antibacterial applications Twinning mediated anisotropic fracture behavior in bioimplant grade hot-rolled pure magnesium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1