Prediction Method of Asphalt Pavement Performance and Corrosion Based on Grey System Theory

IF 1.5 Q4 ELECTROCHEMISTRY International Journal of Corrosion Pub Date : 2019-01-01 DOI:10.1155/2019/2534794
Ding-bang Zhang, Xin Li, Yi Zhang, Hang Zhang
{"title":"Prediction Method of Asphalt Pavement Performance and Corrosion Based on Grey System Theory","authors":"Ding-bang Zhang, Xin Li, Yi Zhang, Hang Zhang","doi":"10.1155/2019/2534794","DOIUrl":null,"url":null,"abstract":"The Grey system theory is a new mathematical method to predict data changes in the poor data integrity. As a branch of Grey system theory, the GM (1, 1) model is widely used because only small sample data and simple calculations are needed in prediction of engineering project. It is a critical problem to effectively predict the performance and corrosion of asphalt pavement of highway construction due to the inadequacy of highway performance monitoring data. The smoothness, rut, and pavement skid resistance are three important indexes to evaluate the performance and corrosion of asphalt pavement. This paper has established the prediction model and derived prediction equation of asphalt pavement performance according to the GM (1, 1) model method and then listed the calculation equation of residual and the gray absolute correlation degree. Based on the experience of constructed Dalian-Guangzhou expressway in China, the vectors “a” and “b” in the prediction equation of smoothness, rut, and pavement skid resistance have been calculated by using the original monitoring data. The field monitoring data are compared with the predictive data for residual and the gray absolute correlation. The results reveal that the predicted data of the smoothness, rut, and skid resistance are mostly consistent with the monitoring data, the biggest residual of the above three indexes is smaller than 8.09%, and the gray absolute correlation degrees all exceed 0.9, which means the accuracy of the predicted equation is excellent. The calculation method based on GM (1, 1) model can effectively predict the changing performance index of asphalt pavement.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2534794","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/2534794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 11

Abstract

The Grey system theory is a new mathematical method to predict data changes in the poor data integrity. As a branch of Grey system theory, the GM (1, 1) model is widely used because only small sample data and simple calculations are needed in prediction of engineering project. It is a critical problem to effectively predict the performance and corrosion of asphalt pavement of highway construction due to the inadequacy of highway performance monitoring data. The smoothness, rut, and pavement skid resistance are three important indexes to evaluate the performance and corrosion of asphalt pavement. This paper has established the prediction model and derived prediction equation of asphalt pavement performance according to the GM (1, 1) model method and then listed the calculation equation of residual and the gray absolute correlation degree. Based on the experience of constructed Dalian-Guangzhou expressway in China, the vectors “a” and “b” in the prediction equation of smoothness, rut, and pavement skid resistance have been calculated by using the original monitoring data. The field monitoring data are compared with the predictive data for residual and the gray absolute correlation. The results reveal that the predicted data of the smoothness, rut, and skid resistance are mostly consistent with the monitoring data, the biggest residual of the above three indexes is smaller than 8.09%, and the gray absolute correlation degrees all exceed 0.9, which means the accuracy of the predicted equation is excellent. The calculation method based on GM (1, 1) model can effectively predict the changing performance index of asphalt pavement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰色系统理论的沥青路面性能与腐蚀预测方法
灰色系统理论是在数据完整性差的情况下预测数据变化的一种新的数学方法。GM(1,1)模型作为灰色系统理论的一个分支,在工程项目预测中由于样本数据少、计算简单而得到了广泛的应用。由于公路性能监测数据的不足,如何有效预测沥青路面的性能和腐蚀是公路建设中的一个关键问题。平整度、车辙和路面防滑性是评价沥青路面性能和腐蚀性能的三个重要指标。本文根据GM(1,1)模型法建立了沥青路面性能预测模型,推导了预测方程,并给出了残差和灰色绝对关联度的计算公式。根据国内已建成的大广高速公路的经验,利用原始监测数据,计算了平整度、车辙和路面防滑性预测方程中的向量a和b。将现场监测数据与预测数据进行残差和灰色绝对相关比较。结果表明,平整度、车辙、防滑性预测数据与监测数据基本一致,3项指标最大残差均小于8.09%,灰色绝对关联度均大于0.9,预测方程精度较好。基于GM(1,1)模型的计算方法能够有效预测沥青路面性能指标的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
8
审稿时长
14 weeks
期刊最新文献
Empirical Study of the Effect of Nanocoolant Particles on Corrosion Rate of 316 Stainless Steel Walk-Through Corrosion Assessment of Slurry Pipeline Using Machine Learning Corrosion Behaviour of a Cr2O3 Coating on Mild Steel in Synthetic Mine Water The Inhibitory Properties of the Ambroxol Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Medium Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1