{"title":"Prediction Method of Asphalt Pavement Performance and Corrosion Based on Grey System Theory","authors":"Ding-bang Zhang, Xin Li, Yi Zhang, Hang Zhang","doi":"10.1155/2019/2534794","DOIUrl":null,"url":null,"abstract":"The Grey system theory is a new mathematical method to predict data changes in the poor data integrity. As a branch of Grey system theory, the GM (1, 1) model is widely used because only small sample data and simple calculations are needed in prediction of engineering project. It is a critical problem to effectively predict the performance and corrosion of asphalt pavement of highway construction due to the inadequacy of highway performance monitoring data. The smoothness, rut, and pavement skid resistance are three important indexes to evaluate the performance and corrosion of asphalt pavement. This paper has established the prediction model and derived prediction equation of asphalt pavement performance according to the GM (1, 1) model method and then listed the calculation equation of residual and the gray absolute correlation degree. Based on the experience of constructed Dalian-Guangzhou expressway in China, the vectors “a” and “b” in the prediction equation of smoothness, rut, and pavement skid resistance have been calculated by using the original monitoring data. The field monitoring data are compared with the predictive data for residual and the gray absolute correlation. The results reveal that the predicted data of the smoothness, rut, and skid resistance are mostly consistent with the monitoring data, the biggest residual of the above three indexes is smaller than 8.09%, and the gray absolute correlation degrees all exceed 0.9, which means the accuracy of the predicted equation is excellent. The calculation method based on GM (1, 1) model can effectively predict the changing performance index of asphalt pavement.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2534794","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/2534794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 11
Abstract
The Grey system theory is a new mathematical method to predict data changes in the poor data integrity. As a branch of Grey system theory, the GM (1, 1) model is widely used because only small sample data and simple calculations are needed in prediction of engineering project. It is a critical problem to effectively predict the performance and corrosion of asphalt pavement of highway construction due to the inadequacy of highway performance monitoring data. The smoothness, rut, and pavement skid resistance are three important indexes to evaluate the performance and corrosion of asphalt pavement. This paper has established the prediction model and derived prediction equation of asphalt pavement performance according to the GM (1, 1) model method and then listed the calculation equation of residual and the gray absolute correlation degree. Based on the experience of constructed Dalian-Guangzhou expressway in China, the vectors “a” and “b” in the prediction equation of smoothness, rut, and pavement skid resistance have been calculated by using the original monitoring data. The field monitoring data are compared with the predictive data for residual and the gray absolute correlation. The results reveal that the predicted data of the smoothness, rut, and skid resistance are mostly consistent with the monitoring data, the biggest residual of the above three indexes is smaller than 8.09%, and the gray absolute correlation degrees all exceed 0.9, which means the accuracy of the predicted equation is excellent. The calculation method based on GM (1, 1) model can effectively predict the changing performance index of asphalt pavement.