RGSE: Robust Graph Structure Embedding for Anomalous Link Detection

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-06-08 DOI:10.1109/TBDATA.2023.3284270
Zhen Liu;Wenbo Zuo;Dongning Zhang;Xiaodong Feng
{"title":"RGSE: Robust Graph Structure Embedding for Anomalous Link Detection","authors":"Zhen Liu;Wenbo Zuo;Dongning Zhang;Xiaodong Feng","doi":"10.1109/TBDATA.2023.3284270","DOIUrl":null,"url":null,"abstract":"Anomalous links such as noisy links or adversarial edges widely exist in real-world networks, which may undermine the credibility of the network study, e.g., community detection in social networks. Therefore, anomalous links need to be removed from the polluted network by a detector. Due to the co-existence of normal links and anomalous links, how to identify anomalous links in a polluted network is a challenging issue. By designing a robust graph structure embedding framework, also called RGSE, the link-level feature representations that are generated from both global embedding view and local stable view can be used for anomalous link detection on contaminated graphs. Comparison experiments on a variety of datasets demonstrate that the new model and its variants achieve up to an average 5.2% improvement with respect to the accuracy of anomalous link detection against the traditional graph representation models. Further analyses also provide interpretable evidence to support the model's superiority.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 5","pages":"1420-1429"},"PeriodicalIF":7.5000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10146491/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalous links such as noisy links or adversarial edges widely exist in real-world networks, which may undermine the credibility of the network study, e.g., community detection in social networks. Therefore, anomalous links need to be removed from the polluted network by a detector. Due to the co-existence of normal links and anomalous links, how to identify anomalous links in a polluted network is a challenging issue. By designing a robust graph structure embedding framework, also called RGSE, the link-level feature representations that are generated from both global embedding view and local stable view can be used for anomalous link detection on contaminated graphs. Comparison experiments on a variety of datasets demonstrate that the new model and its variants achieve up to an average 5.2% improvement with respect to the accuracy of anomalous link detection against the traditional graph representation models. Further analyses also provide interpretable evidence to support the model's superiority.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒图结构嵌入的异常链路检测
异常链接,如噪声链接或对抗性边缘,广泛存在于真实世界的网络中,这可能会破坏网络研究的可信度,例如社交网络中的社区检测。因此,异常链路需要通过检测器从被污染的网络中去除。由于正常链路和异常链路共存,如何识别污染网络中的异常链路是一个具有挑战性的问题。通过设计一个鲁棒的图结构嵌入框架,也称为RGSE,从全局嵌入视图和局部稳定视图生成的链接级特征表示可以用于污染图上的异常链接检测。在各种数据集上的比较实验表明,与传统的图表示模型相比,新模型及其变体在异常链接检测的准确性方面平均提高了5.2%。进一步的分析也提供了可解释的证据来支持该模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1