Chuang Yu , Zhuhua Hu , Ruoqing Li , Xin Xia , Yaochi Zhao , Xiang Fan , Yong Bai
{"title":"Segmentation and density statistics of mariculture cages from remote sensing images using mask R-CNN","authors":"Chuang Yu , Zhuhua Hu , Ruoqing Li , Xin Xia , Yaochi Zhao , Xiang Fan , Yong Bai","doi":"10.1016/j.inpa.2021.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>The normal growth of fishes is closely relevant to the density of mariculture. It is of great significance to accurately calculate the breeding area of specific sea area from satellite remote sensing images. However, there are no reports about cage segmentation and density detection based on remote sensing images so far. And the accurate segmentation of cages faces challenges from very large high-resolution images. Firstly, a new public mariculture cage data set is built. Secondly, the training set is augmented via sample variations to improve the robustness of the model. Then, for cage segmentation and density statistics, a new methodology based on Mask R-CNN is proposed. Using dividing and stitching technologies, the entire remote sensing test images of the cage can be accurately segmented. Finally, using the trained model, the object detection features and segmentation characteristics can be obtained at the same time. Considering only the area within the target detection frame, the proposed method can count the pixels in the segmented area, which can obtain accurate area and density while reducing time-consuming. Experimental results demonstrate that, compared with traditional contour extraction method and U-Net based scheme, the proposed scheme can significantly improve segmentation precision and model’s robustness. The relative error of the actual area is only 1.3%.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 3","pages":"Pages 417-430"},"PeriodicalIF":7.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.04.013","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
The normal growth of fishes is closely relevant to the density of mariculture. It is of great significance to accurately calculate the breeding area of specific sea area from satellite remote sensing images. However, there are no reports about cage segmentation and density detection based on remote sensing images so far. And the accurate segmentation of cages faces challenges from very large high-resolution images. Firstly, a new public mariculture cage data set is built. Secondly, the training set is augmented via sample variations to improve the robustness of the model. Then, for cage segmentation and density statistics, a new methodology based on Mask R-CNN is proposed. Using dividing and stitching technologies, the entire remote sensing test images of the cage can be accurately segmented. Finally, using the trained model, the object detection features and segmentation characteristics can be obtained at the same time. Considering only the area within the target detection frame, the proposed method can count the pixels in the segmented area, which can obtain accurate area and density while reducing time-consuming. Experimental results demonstrate that, compared with traditional contour extraction method and U-Net based scheme, the proposed scheme can significantly improve segmentation precision and model’s robustness. The relative error of the actual area is only 1.3%.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining