Yongbo Chen, M. Hayatdavoodi, Binbin Zhao, R. Ertekin
{"title":"Scattering of long waves by freely oscillating submerged plates","authors":"Yongbo Chen, M. Hayatdavoodi, Binbin Zhao, R. Ertekin","doi":"10.1115/1.4063181","DOIUrl":null,"url":null,"abstract":"\n We consider a horizontal, submerged plate in shallow water that is allowed to oscillate in the vertical direction due to the wave loads. The plate is attached to a linear spring and damper to control the oscillations. The focus of the study is on the transformation of the wave field by the submerged oscillating plate. To estimate energy scattering, wave reflection and transmission coefficients are determined from four wave gauges; two placed upwave and two placed downwave of the oscillating plate. The flow is governed by the nonlinear Level I Green-Naghdi (GN) equations, coupled with the equations of the vertical oscillations of the plate. Time series of water surface elevation recorded at gauges upwave and downwave of the plate obtained by the GN model are compared with the available laboratory experiments and other data, and very good agreement is observed. Wave reflection and transmission coefficients are then determined for a range of involved parameters, including wave conditions (wavelength and wave height), initial submergence depth of the plate, plate length, and the spring-damper system attached to the plate. It is found that a submerged oscillating plate can have a remarkable effect on the wave field, and that nonlinearity plays an important role in this wave-structure interaction problem. Discussion is provided on how the wave reflection and transmission coefficients vary with the wave conditions, plate characteristics, initial submergence depth and spring-damper system properties.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063181","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a horizontal, submerged plate in shallow water that is allowed to oscillate in the vertical direction due to the wave loads. The plate is attached to a linear spring and damper to control the oscillations. The focus of the study is on the transformation of the wave field by the submerged oscillating plate. To estimate energy scattering, wave reflection and transmission coefficients are determined from four wave gauges; two placed upwave and two placed downwave of the oscillating plate. The flow is governed by the nonlinear Level I Green-Naghdi (GN) equations, coupled with the equations of the vertical oscillations of the plate. Time series of water surface elevation recorded at gauges upwave and downwave of the plate obtained by the GN model are compared with the available laboratory experiments and other data, and very good agreement is observed. Wave reflection and transmission coefficients are then determined for a range of involved parameters, including wave conditions (wavelength and wave height), initial submergence depth of the plate, plate length, and the spring-damper system attached to the plate. It is found that a submerged oscillating plate can have a remarkable effect on the wave field, and that nonlinearity plays an important role in this wave-structure interaction problem. Discussion is provided on how the wave reflection and transmission coefficients vary with the wave conditions, plate characteristics, initial submergence depth and spring-damper system properties.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.