Darren H. S. Tan, Panpan Xu, Hedi Yang, Min‐cheol Kim, Han Nguyen, Erik A. Wu, Jean-Marie Doux, A. Banerjee, Y. Meng, Zheng Chen
{"title":"Sustainable design of fully recyclable all solid-state batteries","authors":"Darren H. S. Tan, Panpan Xu, Hedi Yang, Min‐cheol Kim, Han Nguyen, Erik A. Wu, Jean-Marie Doux, A. Banerjee, Y. Meng, Zheng Chen","doi":"10.1557/mre.2020.25","DOIUrl":null,"url":null,"abstract":"A scalable battery recycling strategy to recover and regenerate solid electrolytes and cathode materials in spent all solid-state batteries, reducing energy consumption and greenhouse gases. With the rapidly increasing ubiquity of lithium-ion batteries (LIBs), sustainable battery recycling is a matter of growing urgency. The major challenge faced in LIB sustainability lies with the fact that the current LIBs are not designed for recycling, making it difficult to engineer recycling approaches that avoid breaking batteries down into their raw materials. Thus, it is prudent to explore new approaches to both fabricate and recycle next-generation batteries before they enter the market. Here, we developed a sustainable design and scalable recycling strategy for next-generation all solid-state batteries (ASSBs). We use the EverBatt model to analyze the relative energy consumption and environmental impact compared to conventional recycling methods. We demonstrate efficient separation and recovery of spent solid electrolytes and electrodes from a lithium metal ASSB and directly regenerate them into usable formats without damaging their core chemical structure. The recycled materials are then reconstituted to fabricate new batteries, achieving similar performance as pristine ASSBs, completing the cycle. This work demonstrates the first fully recycled ASSB and provides critical design consideration for future sustainable batteries.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":" ","pages":"1-10"},"PeriodicalIF":3.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1557/mre.2020.25","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/mre.2020.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 22
Abstract
A scalable battery recycling strategy to recover and regenerate solid electrolytes and cathode materials in spent all solid-state batteries, reducing energy consumption and greenhouse gases. With the rapidly increasing ubiquity of lithium-ion batteries (LIBs), sustainable battery recycling is a matter of growing urgency. The major challenge faced in LIB sustainability lies with the fact that the current LIBs are not designed for recycling, making it difficult to engineer recycling approaches that avoid breaking batteries down into their raw materials. Thus, it is prudent to explore new approaches to both fabricate and recycle next-generation batteries before they enter the market. Here, we developed a sustainable design and scalable recycling strategy for next-generation all solid-state batteries (ASSBs). We use the EverBatt model to analyze the relative energy consumption and environmental impact compared to conventional recycling methods. We demonstrate efficient separation and recovery of spent solid electrolytes and electrodes from a lithium metal ASSB and directly regenerate them into usable formats without damaging their core chemical structure. The recycled materials are then reconstituted to fabricate new batteries, achieving similar performance as pristine ASSBs, completing the cycle. This work demonstrates the first fully recycled ASSB and provides critical design consideration for future sustainable batteries.