Sustainable design of fully recyclable all solid-state batteries

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2020-07-01 DOI:10.1557/mre.2020.25
Darren H. S. Tan, Panpan Xu, Hedi Yang, Min‐cheol Kim, Han Nguyen, Erik A. Wu, Jean-Marie Doux, A. Banerjee, Y. Meng, Zheng Chen
{"title":"Sustainable design of fully recyclable all solid-state batteries","authors":"Darren H. S. Tan, Panpan Xu, Hedi Yang, Min‐cheol Kim, Han Nguyen, Erik A. Wu, Jean-Marie Doux, A. Banerjee, Y. Meng, Zheng Chen","doi":"10.1557/mre.2020.25","DOIUrl":null,"url":null,"abstract":"A scalable battery recycling strategy to recover and regenerate solid electrolytes and cathode materials in spent all solid-state batteries, reducing energy consumption and greenhouse gases. With the rapidly increasing ubiquity of lithium-ion batteries (LIBs), sustainable battery recycling is a matter of growing urgency. The major challenge faced in LIB sustainability lies with the fact that the current LIBs are not designed for recycling, making it difficult to engineer recycling approaches that avoid breaking batteries down into their raw materials. Thus, it is prudent to explore new approaches to both fabricate and recycle next-generation batteries before they enter the market. Here, we developed a sustainable design and scalable recycling strategy for next-generation all solid-state batteries (ASSBs). We use the EverBatt model to analyze the relative energy consumption and environmental impact compared to conventional recycling methods. We demonstrate efficient separation and recovery of spent solid electrolytes and electrodes from a lithium metal ASSB and directly regenerate them into usable formats without damaging their core chemical structure. The recycled materials are then reconstituted to fabricate new batteries, achieving similar performance as pristine ASSBs, completing the cycle. This work demonstrates the first fully recycled ASSB and provides critical design consideration for future sustainable batteries.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":" ","pages":"1-10"},"PeriodicalIF":3.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1557/mre.2020.25","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/mre.2020.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 22

Abstract

A scalable battery recycling strategy to recover and regenerate solid electrolytes and cathode materials in spent all solid-state batteries, reducing energy consumption and greenhouse gases. With the rapidly increasing ubiquity of lithium-ion batteries (LIBs), sustainable battery recycling is a matter of growing urgency. The major challenge faced in LIB sustainability lies with the fact that the current LIBs are not designed for recycling, making it difficult to engineer recycling approaches that avoid breaking batteries down into their raw materials. Thus, it is prudent to explore new approaches to both fabricate and recycle next-generation batteries before they enter the market. Here, we developed a sustainable design and scalable recycling strategy for next-generation all solid-state batteries (ASSBs). We use the EverBatt model to analyze the relative energy consumption and environmental impact compared to conventional recycling methods. We demonstrate efficient separation and recovery of spent solid electrolytes and electrodes from a lithium metal ASSB and directly regenerate them into usable formats without damaging their core chemical structure. The recycled materials are then reconstituted to fabricate new batteries, achieving similar performance as pristine ASSBs, completing the cycle. This work demonstrates the first fully recycled ASSB and provides critical design consideration for future sustainable batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可持续设计完全可回收的全固态电池
一种可扩展的电池回收策略,用于回收和再生废旧固态电池中的固体电解质和正极材料,减少能源消耗和温室气体排放。随着锂离子电池(lib)的迅速普及,电池的可持续回收是一个日益紧迫的问题。锂离子电池可持续性面临的主要挑战在于,目前的锂离子电池不是为回收而设计的,因此很难设计出避免将电池分解为原材料的回收方法。因此,在下一代电池进入市场之前,探索制造和回收新方法是谨慎的。在这里,我们为下一代全固态电池(assb)开发了可持续设计和可扩展的回收策略。我们使用everbat模型来分析与传统回收方法相比的相对能源消耗和环境影响。我们展示了从锂金属ASSB中有效分离和回收废固体电解质和电极,并直接将其再生为可用的形式,而不会破坏其核心化学结构。然后将回收的材料重新合成以制造新的电池,达到与原始assb相似的性能,完成循环。这项工作展示了第一个完全回收的ASSB,并为未来的可持续电池提供了关键的设计考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study Celebrating 50 years of the Materials Research Society Energy storage techniques, applications, and recent trends: A sustainable solution for power storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1