Valuation and cost reduction of behind-the-meter hydrogen production in Hawaii

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2020-07-01 DOI:10.1557/mre.2020.20
A. Headley, G. Randolf, M. Virji, M. Ewan
{"title":"Valuation and cost reduction of behind-the-meter hydrogen production in Hawaii","authors":"A. Headley, G. Randolf, M. Virji, M. Ewan","doi":"10.1557/mre.2020.20","DOIUrl":null,"url":null,"abstract":"A 250kW hydrogen electrolysis facility was recently installed at the Natural Energy Laboratory of Hawaii Authority's (NELHA's) campus. This facility that will begin operation in 2020 to produce hydrogen for fuel cell buses on the island to demonstrate of the application of hydrogen to decarbonize transportation. Given the size of the electrolysis station, it has the potential to significantly increase electricity costs for the campus, which is subject to energy and peak demand charges from the local utility. In this paper, we analyze the cost of hydrogen production at NELHA given the rate structure options available from the utility. Production costs are estimated using optimal versus constant scheduling of the facility to meet the buses’ demand. A model of the electrolysis station is used to capture changes in production efficiency over the power range in the optimization routine. The effects of combining the station and campus load versus standalone operation and increasing solar generation are also explored. The analyses surrounding this scenario show the importance of multiple factors on the potential profitability of hydrogen production in behind-the-meter applications and show trends that could have implications for other similar installations.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1557/mre.2020.20","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/mre.2020.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

A 250kW hydrogen electrolysis facility was recently installed at the Natural Energy Laboratory of Hawaii Authority's (NELHA's) campus. This facility that will begin operation in 2020 to produce hydrogen for fuel cell buses on the island to demonstrate of the application of hydrogen to decarbonize transportation. Given the size of the electrolysis station, it has the potential to significantly increase electricity costs for the campus, which is subject to energy and peak demand charges from the local utility. In this paper, we analyze the cost of hydrogen production at NELHA given the rate structure options available from the utility. Production costs are estimated using optimal versus constant scheduling of the facility to meet the buses’ demand. A model of the electrolysis station is used to capture changes in production efficiency over the power range in the optimization routine. The effects of combining the station and campus load versus standalone operation and increasing solar generation are also explored. The analyses surrounding this scenario show the importance of multiple factors on the potential profitability of hydrogen production in behind-the-meter applications and show trends that could have implications for other similar installations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
夏威夷计量氢气生产的评估和成本降低
最近,夏威夷当局(NELHA)校园的自然能源实验室安装了一台250千瓦的氢电解设备。该设施将于2020年开始运营,为岛上的燃料电池巴士生产氢气,以展示氢在脱碳运输中的应用。考虑到电解站的规模,它有可能显著增加校园的电力成本,这取决于当地公用事业公司的能源和高峰需求费用。在本文中,我们分析了在公用事业公司提供的费率结构选项下,在NELHA生产氢气的成本。生产成本是用最优与不变的设施调度来估计的,以满足公共汽车的需求。电解站的模型被用来捕捉在优化程序的功率范围内生产效率的变化。结合车站和校园负荷与独立运行和增加太阳能发电的影响也进行了探讨。围绕这一情景的分析表明,多种因素对氢生产的潜在盈利能力至关重要,并显示出可能对其他类似装置产生影响的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1