Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
{"title":"Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake","authors":"S. Al-Rmalli, R. Jenkins, M. Watts, P. Haris","doi":"10.3233/bsi-210212","DOIUrl":null,"url":null,"abstract":"Exposure to As from drinking water and its impact on the health of the Bangladeshi population has received much attention. However, very little information is available regarding As exposure through consumption of fish, which is the main source of animal protein for the majority of Bangladeshis. In this study, concentrations of As, Cd, Pb, Mn Se and Zn in different types of fish, consumed by Bangladeshis, were determined using Inductively Coupled Plasma Mass Spectrometry. Daily intakes of the toxic elements As, Cd and Pb through fish consumption were estimated to be 31.8, 0.4 and 4.8 μg/day, respectively. Hilsa (Tenualosa ilisha) contained the highest concentrations of total As (mean ± SD was 2.55 ± 1.3 mg/kg; n = 15) among the fish analysed. However, toxic inorganic As species were not detected. The dominant As species in Hilsa fish were: dimethylarsenic acid, arsenobetaine and arsenosugars, at 69, 11 and 20% of total As, respectively. The high concentration of Cd detected in Hilsa eggs (average 278 ± 518 μg/kg; range 7.4–1725 μg/kg; n = 10) is of concern since this may have harmful effects on the development of embryos and lead to a decline in the Hilsa population or the quality of the fish. It can also be harmful to those who consume Hilsa eggs on a regular basis. Selenium was found to be highest in Shoal (Micropterus cataractae) fish and a type of small fish, and lowest in Mrigal (Cirrhinus cirrhosis). Small fish species contained Mn and Zn at 7.1- and 4.3-fold higher concentrations, respectively, compared to big fish species. Keski (Corica soborna), a small fish species, contained by far the highest concentrations of Mn (52 mg/kg) and Zn (140 mg/kg), although the concentration of As (1.4 mg/kg) in this fish was lower than that of several other fish species. Small fish species are often consumed whole, including the bones, and therefore the essential trace elements present are potentially bioavailable for cellular metabolism. Our study shows that the Bangladeshi population can easily meet their daily requirement of Se and Zn from consumption of fish such as Shoal fish (Se and Zn), Hilsa fish (Se and Zn) and Keski fish (Se and Zn). Consumption of small fish (such as Keski) and big fish (such as Hilsa) from Bangladesh can provide valuable sources of essential trace elements as part of a balanced diet and thus negate the need for supplements and biofortification of certain foods. Ours is a small study and a detailed total dietary intake and human biomonitoring studies, that includes coverage of different socio-economic groups, are needed in Bangladesh before giving people supplements or biofortified foods.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-210212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 1
Abstract
Exposure to As from drinking water and its impact on the health of the Bangladeshi population has received much attention. However, very little information is available regarding As exposure through consumption of fish, which is the main source of animal protein for the majority of Bangladeshis. In this study, concentrations of As, Cd, Pb, Mn Se and Zn in different types of fish, consumed by Bangladeshis, were determined using Inductively Coupled Plasma Mass Spectrometry. Daily intakes of the toxic elements As, Cd and Pb through fish consumption were estimated to be 31.8, 0.4 and 4.8 μg/day, respectively. Hilsa (Tenualosa ilisha) contained the highest concentrations of total As (mean ± SD was 2.55 ± 1.3 mg/kg; n = 15) among the fish analysed. However, toxic inorganic As species were not detected. The dominant As species in Hilsa fish were: dimethylarsenic acid, arsenobetaine and arsenosugars, at 69, 11 and 20% of total As, respectively. The high concentration of Cd detected in Hilsa eggs (average 278 ± 518 μg/kg; range 7.4–1725 μg/kg; n = 10) is of concern since this may have harmful effects on the development of embryos and lead to a decline in the Hilsa population or the quality of the fish. It can also be harmful to those who consume Hilsa eggs on a regular basis. Selenium was found to be highest in Shoal (Micropterus cataractae) fish and a type of small fish, and lowest in Mrigal (Cirrhinus cirrhosis). Small fish species contained Mn and Zn at 7.1- and 4.3-fold higher concentrations, respectively, compared to big fish species. Keski (Corica soborna), a small fish species, contained by far the highest concentrations of Mn (52 mg/kg) and Zn (140 mg/kg), although the concentration of As (1.4 mg/kg) in this fish was lower than that of several other fish species. Small fish species are often consumed whole, including the bones, and therefore the essential trace elements present are potentially bioavailable for cellular metabolism. Our study shows that the Bangladeshi population can easily meet their daily requirement of Se and Zn from consumption of fish such as Shoal fish (Se and Zn), Hilsa fish (Se and Zn) and Keski fish (Se and Zn). Consumption of small fish (such as Keski) and big fish (such as Hilsa) from Bangladesh can provide valuable sources of essential trace elements as part of a balanced diet and thus negate the need for supplements and biofortification of certain foods. Ours is a small study and a detailed total dietary intake and human biomonitoring studies, that includes coverage of different socio-economic groups, are needed in Bangladesh before giving people supplements or biofortified foods.
期刊介绍:
Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.